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Abstract

Nonlinear internal waves in the ocean are discussed (a) from the standpoint of soliton
theory and (b) from the viewpoint of experimental measurements. First, theoretical models
for internal solitary waves in the ocean are briefly described. Various nonlinear analytical
solutions are treated, commencing with the well-known Boussinesq and Korteweg-de Vries
equations. Then certain generalizations are considered, including effects of cubic nonlin-
earity, Earth's rotation, cylindrical divergence, dissipation, shear flows, and others. Recent
theoretical models for strongly nonlinear internal waves are outlined. Second, examples of
experimental evidence for the existence of solitons in the upper ocean are presented; the
data include radar and optical images and in situ measurements of waveforms, propagation
speeds, and dispersion characteristics. Third, and finally, action of internal solitons on sound
wave propagation is discussed.

This review paper is intended for researchers from diverse backgrounds, including acous-
ticians, who may not be familiar in detail with soliton theory. Thus, it includes an outline of
the basics of soliton theory. At the same time, recent theoretical and observational results
are described which can also make this review useful for mainstream oceanographers and
theoreticians.
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1 Preface

The first incarnation of this review paper appeared in 1995 as a Report of the Applied
Physics Laboratory of John Hopkins University (APEL ET AL., 1995). It was planned then
to continue working on the material and publish it in a refereed journal. However, these
plans were frozen when one of the authors and the actual initiator of this project, Prof.
John Apel, passed away.

Recently, we received a suggestion to publish this material both as a technical report
and as a review article in the Journal of the Acoustical Society of America (JASA), with the
motivation being that, the acoustical monitoring of internal solitary waves had become one of
the leading topics in acoustical oceanography. We agreed, realizing that both the theory and
observations of internal solitons have progressed enormously since 1995. Thus, along with
preserving most of the previous material of the paper, we tried to update it in order to reflect,
at least briefly, the main new results in the area. This took another few years, and while
doing that, we had to restrict ourselves in adding too many new parts; otherwise the text
threatened to grow out of our control. As a result, the basic material and older results are
still represented more comprehensively than the results of the last 8-10 years. Still we hope
that, first, we managed to concisely present or at least mention most of the important new
achievements and, second, that such an imbalance is not important to acousticians and other
professionals who are not directly involved in ocean hydrodynamics. On the other hand, for
those who are involved in physical oceanography, the paper can give some useful information
regarding the present status of the problem and also the corresponding references. All this
seems worth the effort, due to the richness of the topic. Indeed, ocean internal solitary waves
are arguably the most ubiquitously observed type of solitons in geophysics, and they affect
many important oceanic processes, especially in the coastal zones. As a result, their studies
by various means, including acoustic ones, is an exciting enterprize. Note also that a review
of laboratory experiments with internal solitary waves has recently been published by two
of the authors (OSTROVSKY & STEPANYANTS, 2005) [see also in (GRUE, 2005)], so that
we omit this important issue here.

2 Introduction and Overview

It has been known for over a century that, in the island archipelagos of the Far East, there are
occasionally seen on the surface of the sea long, isolated stripes of highly agitated features
that, are defined by audibly breaking waves and white water (WALLACE, 1869). These
features propagate past vessels at speeds that are at times in excess of two knots; they are
not usually associated with any nearby bottom feature to which one might attribute their
origin, but are indeed often seen in quite deep water. In the nautical literature and charts,
they are sometimes identified as "tide rips". In Arctic and sub-Arctic regions, especially
near the mouths of fjords or river flows into the sea, analogous phenomena of lower intensity
are known, dating back perhaps even to the Roman reports of "sticky water," but certainly
a recognized phenomenon since Viking times (EKMAN, 1904).
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It is now understood that many of these features are surface manifestations of internal
gravity waves, sometimes only weakly nonlinear but quite often highly nonlinear excitations
in the form of "solitary waves'or "solitons."'2 Their soliton-like nature (steady propagation,
preserving shape) has only relatively recently been established, with two of us rhetorically
questioning in 1989 whether internal solitons actually exist in the ocean (OSTROVSKY &
STEPANYANTS, 1989). Now it is widely accepted view that they (or at least structures close
to solitary waves) exist as ubiquitous features in the upper ocean, and that they may be seen
at scores of locations around the globe with a wide variety of in situ and remote sensors.

This paper sets forth (a) the basic theoretical formulations and characteristics of solitons
in a stratified, sheared, rotating fluid and (b) some of the observational and experimental
evidence for their existence.

Isolated nonlinear surface waves of great durability were first reported propagating in a
shallow, unstratified Scottish canal by John Scott Russell in 1838 and 1844, but their correct
theoretical description was offered much later, in 1870s by BOUSSINESQ and RAYLEIGH and
in 1895 by KORTEWEG and DE VRIES [see, e.g. MILES, 1980]. More recent reviews have
set forth many of the interesting characteristics of solitons in general, such as their ability
to preserve shapes and amplitudes upon interaction, as elastic particles do (SCOTT ET AL.,

1973; ABLOWITZ & SEGUR, 1981; DODD ET AL., 1982).
Recognition of the nonlinear and, more specifically, the solitary character of oceanic in-

ternal waves on continental shelf waters appears to have first been made in the 1960s and
early 1970s (LEE, 1961; ZIEGENBEIN, 1969, 1970; HALPERN, 1971; LEE & BEARDS-
LEY, 1974; APEL ET AL., 1975A), and extensive investigations into the phenomenon have
since been made by many groups of workers. The bibliography includes references to these
works that will be cited later in their proper contexts. A number of experimental data
concerning internal wave (IW) solitons in the ocean may be found in, e.g. (OSTROVSKY &
STEPANYANTS, 1989; APEL, 1995), and later in (DUDA & FARMER, 1999; SABININ &
SEREBRYANY); see also the Internet Atlas of internal solitons (JACKSON & APEL, 2004).

The creation of solitons relies on the existence of both intrinsic dispersion and nonlinear-
ity in the medium. If, through nonlinear effects, the speed of the wave increases depending on
the local displacement, the long wave (simple wave) steepens toward a shock-like condition.
In a dispersive system, however, unlike in non-dispersive acoustics, this shock formation is
resisted by dispersion, i.e. the difference between phase velocities of the various Fourier com-
ponents making up the wave, which tends to broaden the steepening fronts. A soliton then
represents a balance between these two factors, with a wave of permanent shape resulting
that propagates at a speed dependent on its amplitude, the layer depths, and the density
contrast, among other factors. In many cases, a soliton train (a "solibore") is formed rather
than a single soliton.

This simple picture, although providing a conceptual framework for discussing solitons,
2Notwithstanding the formal definition of solitons as nonlinear pulses which remain unchanged upon

interaction (SCOTT ET AL., 1973), we shall use the name soliton for any stable, non-dissipative (or weakly
dissipative) solitary formations, not only for brevity but also because we (and a number of others) believe
that even if solitary waves interact by emitting some radiation (as is typically the case in non-integrable
mathematical models), they still reveal the properties of a particle, which is the reason for the term "soliton".
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must be enriched by a more thorough theoretical treatment of the many facets of solitary
waves.

In the recent years, the "family" of observed internal solitary waves has been significantly
extended, and to address this and other issues, a special Workshop on internal solitary waves
was held in 1998 (DUDA & FARMER, 1999). New observations have confirmed that internal
solitary waves in coastal zones are often strongly nonlinear, so that the most usable weakly-
nonlinear theoretical models fail to describe them adequately.

The atmosphere also supports nonlinear internal waves, most notably the lee-wave/ lentic-
ular cloud phenomenon found downwind of sharp gradients in mountain ranges (see SMITH,

1988; CHRISTIE ET AL., 1978; CHRISTIE, 1989; ROTTMAN & GRIMSHAW, 2002 and
references therein); we do not discuss atmospheric internal waves here, however.

The practical importance of internal waves (IWs) is evident, as strong IWs can provide an
intensive mixing in both the upper ocean and in shallow areas, can affect biological processes,
as well as radar signals, play a role in underwater acoustics and underwater navigation, etc.
Military aspects of the problem are of interest as well; apart from the seemingly anecdotal
information circulated in 1970s on the IW role in submarine catastrophes, it should be
noted that some recent publications have been supported under Naval auspices, such as the
aforementioned Workshop (DUDA & FARMER, 1999).

We shall concentrate on internal solitons in the sea, with Section 3 developing the theo-
retical aspects, Section 4 giving a summary of observational data (in situ and remote), and
their discussion. Finally, Section 5 briefly outlines the impact of internal solitons on acoustic
waves.

3 Theoretical Models

3.1 Basic equations

The description of internal gravity waves in water is, in general, based on the equations of
hydrodynamics for an incompressible, stratified fluid in a gravity field:

ou Vp u ga-+ (U. V) U + V + (fU) (1)
at p

op_O- + (U V) 0, (2)

Vu-- 0 (3)

Here the basic variables are: U = (,a, ,), w) is the fluid velocity vector (w is its vertical
component), p is the fluid pressure, p is its density, g is the gravitational acceleration, and
f is the Earth's angular frequency vector.

In the ocean, the static density variations are very small, typically less than one percent.
This enables one to somewhat simplify the problem by using the Boussinesq approximation.
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Let us represent the density field p = po(z) + p' as the sum of a large, equilibrium, depth-
dependent part p0 (z), and a small variable part p'(r, t), where r = (x y, z) is the position
coordinate, with x and y lying in the horizontal plane, and z directed upward. According
to Boussineq approximation, vertical variations of the static density, po(z), are neglected
in all terms except the buoyancy term proportional to dpo/dz which is, in fact, responsible
for the existence of internal waves. Boundary conditions of zero vertical displacement are
applied at the bottom, z = -H, and at the horizontal surface z = 0 that corresponds
to the unperturbed water surface, (the "rigid lid" approximation, an analog of Boussinesq
approximation for the boundary condition).

The hydrodynamical equations written in the Boussinesq approximation and its ancillary
relationships then have the forms

Ow
V U+ =0 (4)az

19u [ 9U ,~ (5)po 9 + Vp' + p0 (f X u) - ow + pO(u. V)u s1,
Opt dpo apt"
0- +w•d- W-z + (U -V)p' -S2, (6)
at dz 19

__' [ __ 1 ow
- gp+ P W-p + (u. V)w -Po 0 83, (7)

Here the variables are: u = (u,v) is the horizontal fluid velocity vector; w is its vertical
component; p' is the fluid pressure perturbation; f = 2Q sin •p is the so-called Coriolis pa-
rameter or radian frequency; (ýo is the geographic latitude and Q is the angular velocity of
the Earth' rotation) 3, and V is the two-dimensional (2D) gradient operator acting on the
horizontal plane (x, y) . For the derivation of these relationships see, e.g. PHILLIPS (1977),
LEBLOND & MYSAK (1978), MIROPOL'SKY (1981) or APEL (1987).

3.2 Shallow-water models

Most of the studies devoted to internal solitons deal with moderate-amplitude waves for
which the velocity variations in the wave are small compared with the wave phase velocity;
this permits us to take into account only linear and quadratic terms in the theory. It is also
typically supposed that the characteristic horizontal scale of the wave is large compared with
either the depth of the basin or the thickness of the layers where the perturbation mode is
localized. In other words, dispersion and nonlinearity are relatively small and comparable
in magnitude. These restrictions mean that the right-hand parts of the previous equations
specified as s 1,2 ,3 are small, which permits one to use perturbation theory4 . We begin from

3Here the so-called traditional approximation is used, where only the vertical component of f is taken
into account, which is valid for long waves (see the references cited in this paragraph).

4The "nonhydrostatic" linear term poOw/Ot in 83 is small provided the wavelength is large in comparison
with the vertical scale.
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this approximation, keeping in mind that strongly nonlinear processes also exist in the oceans,
and they will be addressed further in this paper.

S• dW,
) == E 14'7M(Z)Wm(X, Yt), U-= Z Cm Um(XY, 0 (8)

m=1 m=1

and similarly for other variables. Vertical displacement of the isopycnal surfaces (those of

equal density) is given by (x, y, z, t) = E 7,(x, y, t)Wm(z). Here C.m are constants. The
mn=1

orthogonal eigenfunctions W,, satisfy the boundary-value problem in the linear, nondisper-
sive approximation:

d2 W N 2 (z)
+z-- +T= 0 (9)

dZ2  C2

with boundary conditions W(0) = W(-H) = 0. From this, the eigenvalues c = cm and the
eigenfunctions W. can be found; note that cm has the meaning of a long-wave velocity for
each internal mode. The important quantity

N (z) -~dpo (10)
S= V/P0 Odz (0

is the Brunt-Viiisfl5 or buoyancy frequency, the rate at which a stably stratified column of
water oscillates under the combined influence of gravity and buoyancy forces.

Two simple cases are often considered for the modal problem. The first is the case
N = constant, which occurs when the function po(z) is an exponential. For small density
variations, this exponential function can be considered as a linear one. In this case W(z) is
a harmonic function, and c =Cm NH/mrn, where m = 1, 2 .... From here it follows that
the first mode is the fastest.

Another very useful model, which will be often considered below, is a fluid consisting
of two layers, with upper layer having thickness h, and density Pl, and the lower one, of
thickness h2 = H - h, and density P2 > Pl. This models a sharp jump of the density, a
pycnocline, typical of many areas of the ocean. Again, the density difference, 6P = P2- P1, is
supposed small, 6p K< P1,2- In this case, only one internal mode exists and has the following
long-wave speed

/gyp h, h 2

p. hi +1 h2 '

where p., = !(P1 + P2) is the mean density of the fluid.
In the general case, after solving (9), approximate equations describing the dependence

of physical values on x, y, and t in long waves can be derived with the use of different pertur-
bation schemes. Here we briefly describe a rather general model suggested by OSTROVSKY

(1978), that reduces the problem to the solution of a system of coupled evolution equations
in a form analogous to the Boussinesq equations (which should not be confused with the
Boussinesq approximation) for long, weakly nonlinear surface waves. A variable 17 is used
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that characterizes the vertical displacement of an isopycnal surface from their equilibrium
levels. Along this undulating surface,

=7 + (u.- v),q, (12)at
so that at z = const we have

V0r/±0z2't (13)SW O + (U.- V)77 + b- 77 13

if we neglect nonlinear terms of the third and higher orders. Substituting this into the basic

set of equations, orthogonalizing them [i.e. multiplying each equation by W or dW/dz and
integrating over z at the interval (-H, 0)], and then invoking some elementary transforma-

tions, we finally obtain a system of 2D coupled equations. In the absence of any resonance
interactions, each mode can be considered as independent, which yields the following system:

-t + H (VU) + 0 (V -71U) = 0, (14)

at 2

at H 2)2H at 1 at2a-u ±+-V?+(fxU)(1-•)+u[(UV)U -H 1 (U)=DH a 0. (15)

Here a and D are non-dimensional parameters describing nonlinearity and high-frequency

dispersion, respectively. For each mode, they are determined by

0=H f W 3dz, D = QIW2dz, Q = 0 W)dz. (16)a=QH dz D HQ -H \d

Equations (14) and (15) are the extensions of the Boussinesq equations, well known for

surface waves, to the internal modes. A known peculiarity should be noted here: for the
case of N(z) = const, the nonlinear parameter o is zero, so that the nonlinearity vanishes in
these equations, and reveals itself only in either the next (cubic) approximation or by going
beyond the Boussinesq and/or rigid lid approximations.

At small nonlinearity, only a weak mode coupling exists, that usually leads to small
corrections to the shape of the soliton and to its velocity, as long as there is no resonant

coupling between different modes, such as occurs, for instance, when their phase velocities

are close to one another. If the latter is not the case, one may consider each mode separately.
However, there are important cases of complex density profiles wherein strong mode coupling
may occur. Some effects of neighboring mode coupling on the propagation of the Korteweg-

de Vries (KdV) soliton were evaluated in the paper by VLASENKO (1994). There it was shown
that the influence of an n-th mode on the fixed m-th mode decreases in inverse proportion
to in - m.

It is interesting that the system (14), (15), which here describes internal wave modes,
is also applicable to long-wavelength Rossby (or planetary/potential vorticity) waves that

9



exist when the Coriolis parameter f depends on the horizontal coordinate y (the latitude) via
f -_ fo + O3y (PEDLOSKY, 1987). In this case, /0 describes the variation of Coriolis frequency
with latitude (0-plane approximation).

3.3 Internal Waves in Nonrotating Fluids

Let, us first, examine the well-investigated case of internal waves propagating in an arbitrarily
stratified but nonrotating fluid, thus taking f = 0. Suppose that the associated linear
eigenvalue problem has already been solved and that the modal speeds cm are known. Let
us now take into account small dispersion and small nonlinearity. Then for one-dimensional
waves propagating along the x-axis, the Boussinesq set, of equations for IW, (14) and (15),
reduces to

oq+ H a 0 0(7,U) (17)at7 + OX - 2 Ox'

OU c2• a,7 [uOU 1 0(?7U) DH 9377 (18)
t H Ox+ Ox 2H &t OxOt 2 (

If one considers a solution of this set. in the form of a stationary solitary wave vanishing
at infinity and depending on one variable ( = x - Vt, one obtains a soliton in the implicit
form

(2 -z 2 arctan +In .___ _________ (19)

Here • = f-. Formally t~his solution is valid even for strong nonlinearity which, however,

contradicts to the applicability of Eqs. (17) and (18) derived under the condition of small
nonlinearity. Still, this solution could be of some interest from the mathematical viewpoint.
In the small-amplitude limit, ( < 1, Eq. (19) reduces to the explicit form discussed below.
Evidently, the signs ± in Eq. (19) correspond to the waves propagating in opposite directions
along the axis x.

3.3.1 The Korteweg-de Vries (KdV) Equation

For a progressive wave propagating in the positive direction of axis x, the classical Korteweg-
de Vries equation (KORTEWEG & DE VRIES, 1895) widely discussed in literature (see, e.g.
WHITHAM, 1974; MIROPOL'SKY, 1981; ABLOWITZ & SEGUR, 1981) readily follows from
the Boussinesq set, of equations:

O7] Or7] Or7] O37
__ + C ±+ "77a7 +03 = 0, (20)
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where the re-scaled nonlinear and dispersion parameters (a and / respectively) are

3ca cDH2
=2H' = 2 (21)

with a and D given by Eq. (16). The important quantities a and /3 are known as envi-
ronmental parameters and incorporate the effects of buoyancy (density stratification), shear
currents in general (see below) and depth via their effects on the eigenfunction profiles, W(z).

The well-known solitary solution to Eq. (20) is

iq(x, t) = 770 sech2X - Vt (22)

the nonlinear velocity V and the characteristic width A of this soliton being related to the
linear speed c and the amplitude of the displacement 770 by

V = c + a--- A2= 12 0 (23)
3 amo

The dispersion parameter /3 is always positive for oceanic gravity waves (although for
capillary waves on a surface of thin liquid films, this parameter may be negative). The
sign of the nonlinear parameter a may be both positive and negative. The combination of
parameters a and / determines the soliton polarity; namely, the sign of qo is such that A2

in Eq. (23) is positive. Thus, if a is negative, so will be 770, i.e. the soliton is a wave of
isopycnal depression. This appears to be the usual case where a shallow pycnocline overlies
deeper water. However, in shallow seas with strong mixing, the reverse situation may occur,
with the pycnocline being located near the bottom. In this case a and 770 are both positive.

Let us consider the aforementioned two-layer model where p(z) P, for 0 > z > -hi
and p(z) = P2 > Pi for -hl > z > -H. In this case we have

C = [ P I)hh 2] 1 2  (24)
C P2 h, + ph 2  m .hi + 122]_2(4

3c p2h -pih _ 32 -21-12
1 2 3 h -c h (52hlh2 p2 h + p1 h2  2 hh 2  (25)

chlh2 ph, + p2h2  chlh2  (26)
6 p2hl +p 1 h2  6

The relations on the right are valid for the ocean, where 6 p = P2 - PI is always small. As
seen from (25), solitons propagating on a thin upper layer over a deeper lower layer are always
negative, i.e. depressions, whereas solitons riding on near-bottom layers are elevations5.

The one-dimensional KdV equation (20) can be derived directly from the hydrodynamic
equations (4)-(7) in their 2D form [see, e.g. (GRIMSHAW ET AL., 2002b) and references

'Note that surface wave solitons in natural basins or estuaries would always be humps and never de-
pressions. However, capillary solitons on a surface of thin films may be of negative polarity, i.e. they may
represent surface depressions. Such solitons were recently observed in laboratory experiments (FALCON ET

AL., 2002).
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therein]. However, the Boussinesq-type equations (14) and (15) have their own value. They
are valid for arbitrary stratification and also allow various generalizations of the KdV equa-
tion, such as the Kadomtsev-Petviashvili equation shown below. The soliton solution to the
Boussinesq equations, Eq. (19), can be presented in the form of Eq. (22) for small-amplitude
perturbations but relationships between the amplitude, ro0, velocity, V, and half-width, A,
of a soliton, are slightly different. In particular, for the two-layer model the solitary wave
solution was firstly derived by Keulegan, (1953) from the corresponding two-layer Boussinesq
equations. Instead of (23), he obtained

hi - h24 h2h2
V = + 3 (hI - h02 )r,0" (27)

In the limit of 770 --* 0 these formulae reduce to the corresponding expressions (23) for the
KdV soliton.

The KdV equation belongs to the class of completely integrable systems. It was a subject
of intense study during the past five or so decades. Currently it is one of the most thoroughly
studied of nonlinear equations, and we shall not go into details which can be easily found in
numerous books and reviews [see, e.g., (SCOTT ET AL., 1973; WHITHAM, 1974; MILES,

1980; ABLOWITZ & SEGUR, 1981; DODD ET AL., 1982)]. Rather, we will just list a few
salient points of interest. Note first that it belongs to the class of exactly integrable equations
for which an infinite set of integrals of motion exists. A remarkable process worth noting is
the interaction of KdV solitons, from which they escape unchanged, similar to two colliding
rigid particles, only acquiring an additional delay (phase shift) at a given distance (hence
the name of soliton). Another important feature of the KdV equation is that solitons can
arise from arbitrary localized perturbations having the same polarity as a soliton. Moreover,
if the total "mass" of an initial perturbation,

00

M J 71(x, t) dx, (28)
-00

is nonzero and its sign coincides with the soliton polarity, at least one soliton will emerge, even
for a small-amplitude and small-width perturbation (KARPMAN, 1973). In particular, an
initial delta-impulse, rq(x, 0) = rqo(x), where 5(x) is Dirac delta-function, always evolves into
one soliton followed by a dispersive "tail" (ABLOWITZ & SEGUR, 1981). Perturbations with

the opposite sign of mass never generate solitons but rather disperse into a long oscillatory
wavetrain, whose amplitude eventually tends to zero. The number and parameters of solitons
produced by an initial pulse can be calculated exactly by the inverse scattering method or
evaluated approximately by means of perturbation techniques [see, e.g. (KARPMAN, 1973;
ABLOWITZ & SEGUR, 1981)]. The result depends on the value of the Ursell parameter,
Ur = oAoL2//3, where A0 and L0 are the amplitude and characteristic width of the initial
perturbation, respectively6 . Some examples of experimental observations of these processes

6 This parameter is known in nonlinear wave theory as the similarity parameter of the KdV equation

(KARPMAN, 1973). In this pal)er we use the term "Ursell parameter" from the surface-wave terminology
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will be illustrated in the forthcoming Sections. Here we will only mention that for an actual
KdV soliton (22) whose characteristic width, A, is related to the amplitude, 770, according
to Eq. (23), the Ursell parameter is equal to 12, independent of the soliton amplitude.

Transient processes. The single pulse solution to the KdV equation in the form of Eq. (22)
is very simple, and readily provides physical insight when examined. However, a common
observation in the ocean is of wave-trains consisting of several oscillations with wavelengths,
crest lengths, and amplitudes varying from the front to the rear of the wavetrain (as schemat-
ically shown in Fig. 1 plotted from a simple theoretical model of evolution of an initial step-
function within the framework of the KdV equation). As these oscillations, especially the
few frontal ones, are very close to being a series of solitons (indeed, each oscillation develops
into independent soliton at infinity), and the entire perturbation represents an undular bore,
it is sometimes called solibore (APEL, 2003).

2.0
C
0

S1.5

C 1.0

0.5

0.0
50 100 150 200 250 300

Distance

Figure 1: Disintegration of a stepwise perturbation into a train of solitons within the frame-
work of the KdV equation (a simplistic scheme of solibore formation). Axes are in arbitrary
units.

KORTEWEG AND DE VRIES (1895) had already found periodic solutions to their equation

in the form of the so-called "cnoidal" waves, which involve the Jacobi elliptic function cn (x).
This function has a nonlinear parameter, s, that characterizes the degree of non-linearity,
with 0 < s < 1. For the KdV equation, the cnoidal solution is given by [see, e.g. (KARPMAN,

1973)]:

77(x, t) = 77,T + i70cn2 [ko(x - Vt)] (29)

and apply it to general water waves.
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In the above solution 770 is the wave magnitude, 77m is the constant background and k0 is
the wavenumber; the soliton velocity V can be expressed in terms of these parameters. This
solution reduces to a harmonic wave when s -+ 0 and cnsx -> cos x, and to a solitary wave
when s -> 1 and cnx -- sech 2 x. Thus, the soliton can be considered as a limit of a periodic
wave train at s = 1.

However, there is still some ocean phenomenology missing from the cnoidal solution.
Specifically, it does not describe transient processes such as the onset and the long-term
trailing edge displacement of the isopycnal surfaces behind the wave group. Using an ap-
proximate approach suggested by WHITHAM (1974), GUREVICH & PITAEVSKII (1973) have
constructed a self-similar solution for the evolution of an initially stepwise perturbation into
a train of oscillations with a slow variation of the nonlinear parameter s within the train.
In the process of evolution, these oscillations become deep at the front of the perturbation
forming a set of separated impulses, each close to a soliton, and eventually decrease to a
constant trailing edge. A recent review on further development of the Gurevich & Pitaevskii
approach can be found in EL ET AL., 2005. An exact analytical solution describing the
disintegration of a stepwise initial perturbation into solitons was obtained by KHRUSLOV

(1975, 1976) using an inverse scattering method. Figure 1 illustrates such a process.
To describe an oceanic nonlinear wave train with oscillatory behavior at the leading

edge and a constant depression at the trailing edge, APEL (2003) has applied the Gurevich
& Pitaevskii approach to modeling the internal solibores. For a stepwise initial impulse
exerted on a fluid at t = 0, the solution of the KdV equation is given by:

7 tx,-1) = ,7 + ,70 {dn2 [ko(x - Vt)] - (1 - s2) (30)

where dn,(x) is another periodic elliptic function (Jacobi delta-amplitude) which tends to
unity at s -+ 0 and to sech 2 (x ) when s -4 1; and s is a slowly varying function of x and t.

This solution, which Apel has named the "dnoidal" wave, can be suitable for describing
weakly nonlinear internal tides. For this case, initial tidal perturbations have a finite duration
and are relatively smooth. Thus, the process of solibore formation includes a stage of wave
steepening and the subsequent formation of oscillations. The first stage may be described
by the equation of a "simple wave" which is in fact a KdV equation with 3 = 0, i.e. the
dispersionless KdV equation. Each point of such a wave propagates at its own velocity,
c + -G.7, until the wave front becomes steep [see the details in (APEL, 2003; EL ET AL.,

2005)]. At, that point, the dispersion effects must be taken into account, which leads to the
formation of solitons at, the frontal zone of each tidal period, which smoothly transfer to a
dnoidal wave with variable parameters at the rear. To accommodate this relaxation back
to the equilibrium state, Apel introduced an "internal tide recovery function"I(x, t), which
multiplies the dnoidal solution. This function takes the dnoidal solution back to equilibrium,
using just one adjustable parameter which is the time required for the relaxation to occur.
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3.3.2 The Extended and Modified Korteweg-de Vries Equations

It follows from the above that for P2h2 < p1h 2 (that is practically h, < h2 for the ocean),
solitons cause the interface (the pycnocline) to descend, and vice versa if the inequality is
reversed. Of some interest is the special case when h2/h 2 P2/Pl • 1, i.e. the interface is

close to the middle of the water layer. In this case the nonlinear coefficient a• is small or even
equal to zero. As mentioned before, in this case one must either abandon the Boussinesq and
rigid lid approximations or take into account higher-order nonlinear terms in the evolution

equations. In the latter case, the extended Korteweg-de Vries (eKdV) equation (also called

the combined KdV and Gardner equation), having both quadratic and cubic nonlinearities,
results (LEE & BEARDSLEY, 1974; DJORDJEVIC & REDEKOPP, 1978; KAKUTANI &

YAMASAKI, 1978; MILES, 1979; GEAR & GRIMSHAW, 1983; SMYTH & HOLLOWAY,

1988; LAMB & YAN, 1966):

(-± + c ±+ + = 0, (31)

where for the case of two-layer fluid the second nonlinear coefficient is

3c [7 (P2h2 - p1h 2 
2  + 3c(h, + h2) 2 + 4h 1h2al -_- -- 1-)--- p (2

2 h2 -8 -P2•1 +pih 2 ) p2 h + p1h 2J 8 h (h32

The last expression is again valid for the case of close densities which we shall consider below.
This equation, as well as its generalization containing a combination of higher-order

nonlinear and dispersive terms, was derived by many authors starting from the paper by Lee

& Beardsley (1974). A contemporary derivation, convenient for applications, can be found,

e.g. in (DJORDJEVIC & REDEKOPP, 1978; GRIMSHAW ET AL., 2002B).

As follows from Eq. (32), within the framework of two-layer model, a, is always negative.

However, in the general case the coefficient a, may be either negative or positive (GRIMSHAW

ET AL., 1997; TALIPOVA ET AL., 1999).

If the pycnocline is located just at the critical level so that the parameter a is exactly
zero, Eq. (31) reduces to the well-known modified Korteweg-de Vries (mKdV) equation.
In the geophysically most interesting case, when a, < 0 and 13 > 0, this equation has no
stationary solitary wave solutions asymptotically vanishing at x --*ý ±00. However, it has

a particular solution that is a type of stepwise transition, which can be considered to be a

soliton in a more general sense. Such a solution is usually called a kink and has the form of
a bore moving into a depression area (PERELMAN ET AL., 1974; ONO, 1976; ROMANOVA,

1979; MILES, 1981; GROSSE, 1984; FUNAKOSHI & OIKAWA,1986):

±q]= ijotanh (X Vt) (33)

where now

V = c + a,7____ and A 2 = 613 (34)
3 a 7125
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Note that the vertical velocity component w _- Or9/Ot has the form of a localized pulse,
so that it may properly be treated as a soliton. The specific feature of such a kink is that
its velocity, V, is always less then the linear velocity, c, due to a, < 0.

Internal bores in a two-layer fluid were recently considered in ( DIAS & VANDEN-

BROECK, 2003). They studied numerically the structure of steady-state bores of arbitrary
amplitude within the framework of the primitive set of hydrodynamic equations for inviscid
fluid. Two families of kink-type solutions were found in the form of the elevation and de-
pression fronts. These solutions included bores of limiting configuration, when the interface
reaches either the upper or lower boundary (i.e. free surface or bottom). Limiting depres-
sion bores always have monotonic fronts, whereas their counterparts in elevation may have
non-monotonic profiles.

The hydrodynanic stability of internal solitons and bores has been only scarcely studied.
However, waves in a two-layer fluid always create a discontinuity of the tangential velocity at
a pycnocline. In particular, for a bore such a velocity jump extends far behind its front. In
general, in such a shear flow, the Kelvin-Helmholtz instability does exist (e.g. STEPANYANTS

& FABRIKANT, 1996). This issue is interesting because some observations of internal bores
in lakes, seas, and oceans have already been reported (see, e.g. THORPE, 1971; WINANT,

1974; IVANOV & KONYAEV, 1976).
The mKdV equation also has soliton-type solutions, but only those propagating on a

constant nonzero pedestal (PERELMAN ET AL., 1974; ONO, 1976; ROMANOVA, 1979; Fu-
NAKOSHI & OIKAWA, 1986). These solutions are interesting not so much by themselves
as they are within the framework of the eKdV Eq. (31) with oz 5 0 (note that under the
transformation 7 = v, - a/2oi, Eq. (31) can be reduced to the mKdV form). In this case the
solitary solution of Eq. (31) can be written in the form of a kink-antikink pair of a stationary
shape:

XX - t -
-i [tanh ( + Q 0 tanh (X-t- '(35)

or, equivalently,

oa i sinh(2¢)
77(X, t) 2=( ih(0 0 (36)

, 1 2 cosh2 [(_ - Vt)/A] + sinh 2  (6
where v is a free dimensionless parameter with the range 0 < v < 1, and the remaining

parameters are

_ (-") = In + V A =1 I (37)
(1 - V) I'a V •6al

In contrast with the kink described by (33) and (34), the velocity of this soliton is always
greater than the linear velocity c. This family of solutions has rather interesting properties.
The amplitude of the soliton, 710 = -(/al)v tanh 0, varies from zero up to a maximum of
ja/a•1 , in contrast to the amplitude of the KdV soliton, which in principle can range from
zero to infinity. When soliton amplitude approaches its maximum value, its width increases

16



so that the soliton profile changes from the bell shape to the rectangular shape. In the limit
v -+ 1, the eKdV soliton tends to two infinitely separated kinks.

In the near-critical situation when h, - h2 = h and the eKdV equation is indeed appli-
cable, the amplitude does not exceed Ih2 - h1 /2, and the velocity cannot exceed the value
of

+_ [(h 2 -hi ) 21(8Vmax C - 6a C+ -- . (38)

Note that if the ratio hl/h 2 is as close to unity as P2/pl, the latter ratio must be taken into
account in these formulae. For example, the maximal soliton amplitude is Ip 2hl - plh 2 l/2p2.

Furthermore, the solution (35) has in fact two spatial scales: that of the hyperbolic
tangent profile, as characterized by the parameter A, and a distance between these profiles
characterized by the parameter S = q(v)A. In general, the actual width of the soliton is
determined by these parameters, which in turn depend on the hydrodynamic environment
and the amplitude through the free parameter v. Figure 2 shows normalized shapes of
solitons for three values of the modified free parameter c - 1 - v. The evolution from a
classical KdV soliton when v is small and the characteristic total width D • 2A to the
flat-top kink-antikink construction at v -+ 1, in which case D • 2S, is clear.

"E 1.00
0 ,' / ",
E j

00.75 j I
g !' '

0.25 2/

n 0.00 /"
-10 -5 0 5 10

Distance

Figure 2: Normalized wave shapes in the eKdV equation (35) for three values of the param-
eter - = 1 - v: 1 - E = 101 (close to the KdV case); 2 - E = 10-4; 3 - e = 10-7.

The width of the soliton increases in both limits: v -+ 0 and v -+ 1. Hence, for some
v = v,, there exists a minimum value of D. Figure 3 depicts D0 .5 , the full width of the soliton
at the half its maximum amplitude, as a function of the amplitude, 710. The minimum of
D0 .5 occurs at v - 0.9, when the amplitude is about 0.56 of the maximum. A more detailed
discussion of the dependency between D and m0 both for weakly nonlinear perturbations,
described by the eKdV equation, and for more intensive perturbations, described by the
primitive Eulerian equations, can be found in the paper by FUNAKOSHI & OIKAWA (1986).

From Eq. (37) it follows that
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Figure 3: Dependency of the characteristic width, D0.5, of eKdV solitons, Eq. (35), on
amplitude ý0 in dimensionless variables: D0 _5 = D0 ,5ýa•/(24a.1/) 1/2; 4o = 7o 1/a.

1 v0 =-- (39)
(I +v + V1 +I'

with v related to 0 and A by Eqs. (37).
An interesting observation was made in (GRIMSHAW ET AL., 1997) and (TALIPOVA ET

AL., 1999). It has been shown that given a certain hydrology (density stratification), the
cubic nonlinear coefficient G.1 may in fact become positive. In particular, this is the case of
a three-layer fluid with two density jumps located symmetrically with respect to the middle
of the fluid layer. The coefficients of the eKdV equation (31) for one of two internal modes
in the Boussinesq approximation (P1 • P2) are

c= APgh, a=0, a, 4h2 3c 1 ), /3= -(H -_ ) , (40)

where H is the total fluid depth and h < H12 is the thickness of the upper and the lower
layers. At the critical thickness, h, = 9H/26, both quadratic and cubic nonlinear coefficients
vanish (however for another mode, the coefficient. a remains nonzero). Apparently, the next
order nonlinearity must be taken into account in this case.

Higher-order KdV equations containing corrections both to the nonlinear and dispersive
terms have been derived for internal waves in a stratified shear flows in many papers be-
ginning from the aforementioned pioneering paper by LEE & BEARDSLEY (1974). For a
rather general and convenient form of this derivation, see, e.g. (GRIMSHAW ET AL., 2002b)
and (POLOUKHINA ET AL, 2002). In the case of positive cubic nonlinearity (e.g., when
h < 9H/26, where H is the total fluid depth), solitons of both positive and negative po-
larities may exist on a zero background. In addition to that, nonstationary solitons, called
breathers, are also possible. The evolution of initial pulse-type perturbation may be fairly
complex (GRIMSHAW ET AL., 1997).
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The mathematical theory of the eKdV equation has been developed in many papers for
different combinations of signs of nonlinear and dispersion terms (MILES, 1981; MARCHANT

& SMITH, 1996; SLYUNYAEV & PELINOVSKII, 1999; SLYUNYAEV, 2001; GRIMSHAW ET

AL., 2002A). It was shown that the eKdV equation and its reduced version, the mKdV equa-
tion, are also completely integrable equations as is the usual KdV equation. In particular,
SLYUNYAEV & PELINOVSKII (1999) have studied in detail the evolution of an initial pulsed
disturbance and analyzed an exact two-soliton interaction in the case when the dispersion
and cubic nonlinear coefficients of Eq. (31) are of opposite signs (i.e. /3 > 0 and a, < 0).
GORSHKOV & SOUSTOVA (2001) suggested an approximate description of the multi-soliton
interaction based on the perturbation theory for solitons and kinks. This theory was applied
to an experimental situation in the ocean (GORSHKOV ET AL., 2004).

The evolution of initial perturbations in the case when the dispersion and cubic nonlinear
coefficients of Eq. (31) are of the same signs (0 > 0 and ax1 > 0) was studied in SLUNYAEV,
2001. And GRIMSHAW ET AL. (2005) have shown that this situation is typical for the shelf
zones of the World Ocean.

Although the eKdV equation is valid for small nonlinearity and a specific stratification,
sometimes it can be successfully applied to the description of strongly nonlinear internal
solitons as a phenomenological model, whereas the usual KdV equation fails to approximate
observational and laboratory data (STEPANYANTS, 1990; STANTON & OSTROVSKY, 1998;
MICHALLET & BARTH9LEMY, 1998). The reason for this is a qualitative (but in general not
quantitative!) correspondence of the eKdV solitons to those of strongly nonlinear solitary
waves in a two-layer fluid. The correspondence relates, in particular, to the non-monotonic
dependence of their width on the amplitude and to the existence of a limiting amplitude.

3.3.3 The Benjamin-Ono Equation

An important modification is needed if the wavelength is large compared with one (say,
upper) layer but small compared with the other (lower) layer of the ocean, so that one
can let h 2 -+ oc. These waves can be described by another completely integrable model,
namely by by the differential-integral Benjamin-Ono (BO) equation [see, e.g. (ABLOWITZ

& SEGUR, 1981)]:

7 7 0 a 7 (x"' t) '-0, (41)0-+ c + +q aX2, x=0,(1
19t ax Oax -7~r2~ ,d-X

-- 00

where the symbol pv indicates that the principal value of the integral should be taken, and
the coefficients are

- 1  3 c chi P2 (42)

Pl ' 2, -
2 P,

Solitons described by this equation are also well known:
7(X )=7?0 (43)

1 + (x - Vt)(/A2
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Their amplitudes rq, velocities V, and half-widths A are related by

V=c+ 0 4 , and A -4/ (44)4 •T/0

The displacement of these solitons is a downgoing motion of the interface when the upper
layer is thin, and conversely for the case when the thin layer lies near the bottom (there is a
general thumb rule: pycnocline displacement induced by a soliton is directed to the deepest
layer).

As in most integrable cases, the BO solitons restore their parameters after a collision.
However, unlike the KdV case, the displacement in the 130 soliton decreases algebraically, as
X2 , rather than exponentially (therefore they are often called "algebraic solitons"). Another
difference is that 130 solitons do not acquire a phase shift after a collision. As was shown by
D. Pelinovsky & C. Sulem in 1998, they are stable with respect to small perturbations and
can emerge from arbitrary pulse-type initial perturbations of appropriate polarity, i.e., the
polarity required for the existence of a BO soliton.

3.3.4 The Joseph-Kubota-Ko-Dobbs (JKKD) Equation

Apparently, WHITHAM (1974) was the first to point, out explicitly that a linear evolution
equation can be constructed by applying the inverse Fourier transform to a dispersion rela-
tion known for a harmonic wave. Such an equation can be differential or, more generally,
integro-differential. For finite-amplitude perturbations it can be supplemented by a nonlin-
ear term derived in the non-dispersive, long-wave approximation, and which accounts for
a hydrodynamic nonlinearity of the type ia. This approach, albeit not quite consistent,
leads to useful model equations in cases when the regular derivation is cumbersome or even
impossible.

Following these ideas, JOSEPH (1977) and KUBOTA ET AL. (1978) introduced a model
evolution equation, which is termed here the JKKD equation7 . It describes weakly nonlinear
perturbations propagating within a thin oceanic layer surrounded from above and below by
thick homogeneous layers of fluid of arbitrary depth. A similar equation was later derived
rigorously by SEGUR & HAMMACK (1982) for a slightly different configuration in which a
layer of lighter fluid overlies a layer of heavier fluid. The thickness of one of the layers, say
the upper one, hl, is assumed to be small in comparison with the thickness of a lower layer,
h2, i.e. hi/h 2 < 1. At the same time the perturbation wavelength, A >> hl, may have an
arbitrary relationship with h2, i.e. the total water layer can be either shallow or deep. The
resulting evolution equation can be presented in a variety of equivalent forms; one of the
simplest is

0_7 O7l __7 - 2 r7(x'/h 2, t)
+ - +- - o - tanh ( d 0 (45)

-00 (2 h2/

7It, is also called the intermediate long wave (ILV) or finite-depth (FD) equation.
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where, for the two-layer model with a sharp density interface, the parameters c and a are
the same as in Eq. (41) and f3 = chl/(4h2).

The dispersion relation corresponding to this equation and relating the wavenumber k
with a frequency w of the linear perturbations, 77 - exp (kx - wt), is

W 1 kh (46)
w~ck(1 2tanhkh 2 ) (

In the shallow-water (kh 2 -- 0) and deep-water (kh 2 -+ o•) limits this reduces to the
KdV and BO dispersion relations, respectively.

The JKKD equation has a solitary solution which has been obtained by many authors and
presented in different forms (JOSEPH, 1977; CHEN & LEE, 1979; SEGUR & HAMMACK,

1982). One of the forms convenient for practical applications is

2 0 2 X-Vt' (47)
1+ sinh1 Acs~ A

where
4hi sin ( 2h) (8

o A = 1 h (48)
r/- A1cos 2h aaAb• A tn-

Here A is a free parameter characterizing the soliton width.
Equations (47) and (48) reduce to a KdV soliton, Eqs. (22) and (23), in the limit of

h 2/A -+ 0, for a fixed hi/h 2 . Meanwhile, as was pointed out by CHEN & LEE (1979), there
is no smooth transition from the JKKD soliton to the BO soliton as h2 -* c0, in contrast
with Joseph's claim (JOSEPH, 1977). This issue still remains unclear because Eq. (45) tends
to either the KdV or the BO limit as h2 -+ 0 or h 2 -4 oc, respectively. CHEN & LEE (1979)
also found a periodic solution for the JKKD equation, which reduces to the algebraic BO
soliton of the form of Eq. (43) but only for one fixed set of parameters q, V, and A. SEGUR
& HAMMACK (1982) have derived the next-order correction to the wave amplitude for the
JKKD equation, and have obtained the corresponding corrections to the JKKD soliton.

The main features of the initial perturbation dynamics within the framework of the JKKD
equation are very similar to those described by the KdV model. It is worth noting here that
all the models considered above, beginning from the KdV, are analytically integrable, pos-
sessing an infinite set of conservation laws and multi-soliton solutions [see, e.g. (ABLOWITZ

& SEGUR, 1981)]. Their properties have been thoroughly studied by mathematicians.
However seemingly crude it may be, the two-layer model often gives a good approximation

to situations in which the density and velocity vary continuously but sharply with depth;
this occurs especially for the first vertical mode in near-shore regions where moderate depths
are the rule. This may be seen, for example, in a comparison between the two-layer model
and a more exact model based on a smooth density profile (IVANOV ET AL., 1992) which
was measured in the Levant Sea (the eastern Mediterranean). The validity of the two-layer
models and their comparison with results from laboratory experiments are discussed in the
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afore-mentioned report by OSTROVSKY & STEPANYANTS (2005). An optimal adjustment of
the two-layer model parameters which gives the best approximation for wave velocities and
other observable wave characteristics in the real ocean is discussed in (NAGOVITSYN ET AL.,
1990) and (GERKEMA, 1994). However, in other cases the parameters of the corresponding
equations must be calculated from the expressions (21), (16) corresponding to a general
case of a continuously stratified fluid (see, e.g. (OSTROVSKY & STEPANYANTS, 1989), and
references therein).

From an observational viewpoint, it is important to remember that a single measurement
of a solitary-like formation does not guarantee that the entity is indeed a soliton. An initial
impulse may quickly disintegrate afterwards into something other than a solitary wave. In
principle, it is necessary to follow such a wave out to a distance much greater than its
spatial width to ensure that its shape remains stationary, which is not a simple task in
real experiments. Another criterion for identification of a soliton is based on knowledge of
the background density and horizontal velocity profiles. After a theoretical calculation of
soliton parameters, one can compare these with the observational data. For example, the

product of the characteristic wave width A and the square root of its height, vn0, must
not depend on that height. [cf. Eq. (23)], provided the KdV equation is applicable to the
situation considered.

3.4 Soliton Propagation Under Perturbations.

For the conditions generally existing in nature, the simple models considered above are rarely
applicable without taking into account a number of perturbing factors, such as dissipation of
various origins, wave front curvature, horizontal inhomogeneities, depth variation, and the
like. However, these factors are often locally weak enough so that they strongly affect the
wave only at distances large compared to a wavelength. Under these conditions, perturbation
theory is generally applicable. Such an approach results in the appearance in the model
equation of small additive terms, each responsible for a specific perturbing factor. As an
example, for waves much longer than the total depth of the controlling layer, the three
factors mentioned above may be taken into account within the framework of a generalized
"time-like" KdV (TKdV) equation' (in the context of internal waves see, for example, Liu
ET AL., 1985):

S1077 - l 07- a, - q + R(77). (49)
Or C t C2 at c4 ot 2'r 2cdr

The terms in the right-hand side of Eq. (49) describe, respectively, the effects of cylin-
drical divergence (the distance r from the source is supposed to be much greater than the
wavelength), slow variation of the long-wave speed c along the ray r due to spatial inhomo-
geneity (e.g. due to variation of the pycnocline depth), and dissipation.

'This term has been introduced by OSBORNE (1995) for the version of KdV equation with transposed
temp)oral and spatial variables t an(1 x, whereas that form of the equation has been used by many authors
long before. Such equation is relevant to the analysis of time series measured by point sensors in fixed spatial
places.
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The latter term depends on a specific mechanism of losses. In particular, a horizontal
eddy (turbulent) viscosity A[h] and a molecular viscosity v,, result in dissipation that is

described by a Reynolds-type term, R 2 _l (6 is proportional to the sum of A[h] and
vn, and usually A[h] > im). Semi-empirical models accounting for bottom friction are
also used, resulting in the terms R = YRar (Rayleigh dissipation) and R = "YChLrqr! (Chezy
dissipation) with "yRa, "YCh taken as empirical coefficients (HOLLOWAY ET AL., 1997, 1999,
2002; GRIMSHAW, 2002). A rigorous consideration of viscous effects in the laminar bottom
boundary layer leads to inclusion into Eq. (49) of a more complex integral term (GRIMSHAW,

1981, 2002; DAS & CHAKRABARTI, 1986).
From Eq. (49), an ordinary differential equation for the slow variation of the soliton

amplitude rio over large distances can be obtained. As follows from perturbation theory [see,
e.g. (OSTROVSKY, 1974)], the first-order solution of Eq. (49) for the soliton amplitude may
be obtained by multiplying it by q/, substituting the soliton (22), (23) with locally constant
parameters, and then integrating over infinite limits in time, -oo < t < oo. One obtains

d77 2r!0 2r!0 dc 4a6 2

dr 3r 3c dr 450r!° (50)

which describes slow variations of the soliton amplitude under the effect of small cylindrical
divergence, horizontal inhomogeneity, and eddy and molecular viscosity. The variations of
length and width of the soliton are then defined via the local relation, Eq. (23), as before.

As particular cases, we readily obtain the laws of soliton variability due to
(a) cylindrical divergence (6 = 0, c = const):

77ori r-2/3, A , r1 / 3; (51)

(b) a smooth horizontal variation of c in a plane wave:

rio , c- 2/ 3 . (52)

According to Eq. (23), variations of A are not directly defined by c (or q7o) but rather by
a combination of the parameters 0 and a, which may change together with c.

(c) the separate effect of Reynolds losses results in the following damping law:

1 ( = o(0) (53)
0 1 + 70 (0)qr'

where 770(0) is the initial soliton amplitude, and q = 4a56/. From Eq. (53) it is seen that
soliton damping is non-exponential because of the nonlinearity. Moreover, at large dis-
tances, r >> [770(0)q]- 1 , the soliton amplitude ceases to depend on its initial value at all9 ,
n0(r) - (qr)-1. Chezy friction leads to the same law of soliton attenuation (GRIMSHAW,
2002; CAPUTO & STEPANYANTS, 2003), whereas Rayleigh dissipation yields an exponen-
tial damping with an exponent different from that for linear waves (OSTROVSKY, 1983;
CAPUTO & STEPANYANTS, 2003).

9A similar behavior is known in nonlinear acoustics for weak shock waves having a sawtooth form.
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Soliton decay due to energy dissipation in the laminar boundary layer is described by an

integral dissipative term [see, e.g., GRIMSHAW, 2002; OSTROVSKY & STEPANYANTS, 2005

and references therein]:

+r)I - sgn(t - t') 0r7(t', x) d. (54)R (77) =-1_• f t --t'- at, t.(4

-00I t V1 _t`
The dissipation coefficient 51 depends, in general, on many parameters such as the depth,
density, and viscosity of the fluid layers (LEONE ET AL., 1982). However, in the Boussinesq

approximation with the additional assumption that kinematic viscosities of layers are also

equal, vl = 12 = v., this coefficient. may be presented in a relatively simple form (HELFRICH,

1992)"1:

_1 b+(I +2 (l+b) (55)
4ch 1 +h 2 [ 2b W

where b = h1/h2 and W is the width of the tank. The applicability of this dissipation model

requires the boundary-layer thickness to be much less than the total water depth.

For such dissipation, the following damping law for soliton amplitude follows from the

adiabatic theory:

770(T) (1+(0) 4  (56)

where 7c,, is the characteristic spatial scale of soliton decay (see details in the references cited

above). For Tr >> 'r, this formula gives 770('r) - r'T-, and the soliton amplitude also ceases to

depend on its initial value [because 're, 1/4 (0)].

The perturbed KdV and eKdV equations similar to Eq. (49) were used in numerical

modeling of the internal tide transformation on the Australian north-west shelf, the Malin

shelf edge (western cost, of Scotland), and the Arctic shelf (Laptev Sea) (HOLLOWAY ET AL.,

1997; 1999; 2002; GRIMSHAW ET AL., 2005). The spatial variability of the coefficients,
the Earth' rotation and bottom friction effects were taken into account in those papers.

We should remark also that in case (a), Eq. (49) represents the cylindrical KdV equation,
which is completely integrable. This equation possesses exact solitary solutions (CALOGERO

& DEGASPERIS, 1978; NAKAMURA & CHEN, 1981), whose parameters vary in space due

to cylindrical divergence, in agreement with equation (51) as obtained by the asymptotic

method. Note finally that to describe soliton transformation, different models may have to

be employed sequentially. For example, a cylindrically diverging soliton in the BO model

decreases as 1/r; after its broadening due to amplitude decrease, it can eventually be trans-

formed into a cylindrical KdV soliton behaving according to Eq. (51) (STEPANYANTS, 1981).

An interesting kind of dissipation of interfacial internal waves can occur in the deep

ocean when a sharp pycnolcine is adjoined by a smoothly stratified layer of "infinite" depth

1t A misprint in the numerator of formula (A6) of HFvrRIcH's paper of 1992 should be mentioned, it must

be a product of depths rather than their difference.
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(depth much greater than the thickness of the other layer and the characteristic wavelength).
In this case, the governing model equation for the interface perturbation is similar to the
JKKD equation but contains a more complex integral kernel, which describes both the
dispersion and the dissipation due to the radiation of downward propagating bulk internal
waves (MASLOWE & REDEKOPP, 1980; GRIMSHAW, 1981) [see also (GRIMSHAW, 2002)].
According to estimates from these papers made for typical oceanic conditions, such solitary
waves may decay in a time comparable to their intrinsic time scale, Tint - A/V.

3.5 Refraction and Diffraction of Solitons

Various generalizations of the KdV equation have been suggested for nonlinear waves having
smoothly curved phase fronts. One of the most popular is the Kadomtsev-Petviashvili (KP)
equation, which is applicable to a weakly diffracted wave beam, and is based again on adding
a small term to the KdV equation describing transverse variations:

0 19, a?7 007 0 371) ca2• 57
S+ C +0 (57)

where y is the coordinate transverse to the propagation direction x. This equation is also
known to be completely integrable. Its exact solutions have been studied in numerous papers

and books (see, e.g. ABLOWITZ & SEGUR, 1981; INFELD & ROWLANDS, 1990). The

main properties of solitary solutions to this equation as applied to oceanic waves (when the
dispersion parameter is always positive, / > 0) are as follows. A plane soliton is stable with
respect to transverse perturbations of its front. Multiple soliton interactions can occur when
solitons propagate in different directions at small angles to each other. The zone of nonlinear
interaction of two solitons can be fairly long in space; the perturbation in this zone looks
like a KdV soliton and propagates steadily. The interaction between two solitons has been
studied in detail by NEWELL & REDEKOPP (1977) and MILES (1977a, b). They found a
specific case of resonant interaction of two obliquely propagating solitons where the the zone
of nonlinear interaction is infinite and forms another stationary soliton

For waves propagating at small angles to an arbitrarily chosen direction in the horizontal
plane, the 2D analogs of the BO and JKKD equations may also be derived (ABLOWITZ &

SEGUR, 1981). These equations, however, are apparently not integrable. The transverse
stability of a BO soliton was studied and confirmed by ABLOWITZ & SEGUR (1981). Two-
soliton interaction was studied numerically by Tsuji & OIKAWA (2001). They found that
the phenomenon similar to the resonant interaction of KP solitons does occur for the BO
equation, too. However, the concept of resonant interaction is not so effective for that
equation, because the newly generated wave in the zone of nonlinear interaction of two
solitons is far from the BO soliton.

It is interesting to note that strong mathematical ties have been found between the KdV

and KP equations and their cylindrical analogs, in the sense that their solutions can be
expressed via each other [see (STEPANYANTS, 1989) and references therein].
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Another approach to studying two-dimensional effects is the "nonlinear geometrical op-
tics" of solitons, which describes refraction of their fronts. The theory is based on the method
elaborated earlier by WHITHAM (1974) for shock waves and then extended to solitons by
OSTROVSKY & SHRIRA (1976). It considers the motion of soliton fronts in orthogonal co-
ordinates (4, T) corresponding to lines of constant phase and normals to them, or "rays,"
at succeeding moments of time. This leads to a pair of kinematic equations:

1"00 (9R
V~q

(58)

R 0 OV

where R is the dimensionless width of the ray tubes, and 0 is the angle between the rays
and some reference direction. In the case considered, this system must be closed by using
a dynamic relation reflecting the conservation of soliton energy; in particular, for the KdV
equation it. is

R(V - c) 2 A(V) = const, (59)

where A is the soliton width. From this, the system of Eqs. (58) may be shown to possess
two characteristics that define the propagation speed during perturbations of the soliton
amplitude and the shape of the wave front. These perturbations, being strong, propagate
as simple (Riemann) waves with the possible formation of "shocks," i.e. sharp jumps in
amplitude and frontal direction. As also occurs in the dynamics of compressible gases, one
needs a form of dissipation or a "viscosity" to smooth out this shock. As shown by SHRIRA

(1980), weak radiation of small amplitude waves from the soliton front in the process of
soliton adjjustment to the local hydrological conditions may play the role of such a viscosity
in this case. Phenomena suggesting that similar effects may exist for internal solitons have
been observed in the Sulu Sea in the Philippines with sonars and radars (APEL ET AL.,

1985).

3.6 Internal Waves on Shear Flows

The velocities of shear flows in the ocean are often of the same order of magnitude as the
velocities of the IWs, so that. energy exchange between these two types of motions may
be very effective, and may even result in instabilities. As it is well known (MILES, 1961;
HOWARD, 1961), the main p)arameter defining the criterion for stability of a stratified fluid is
the Richardson number, Ri(z) = [N/U•(z)] 2 , where Uo(z) is the horizontal mean flow speed
[see, e.g., (TURNER., 1973; PHILLIPS, 1977; LEBLOND & MYSAK, 1978; MIROPOL'SKY,

1981)].
In the Boussinesq approximation, the modal structure of a linear perturbation is defined

by the Taylor-Goldstein equation:
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dzd[( .2 dW]iF
d (Uo _ C)2 -Oz + [N2 - k2(U° _ c)2] W = 0, (60)

where the notation is the same as in Eq. (9). In the long-wave approximation it is a gener-
alization of Eq. (9):

d (Uo0- c)2dW]- + N2W = 0. (61)

Stable flows. According to the well-known Miles-Howard theorem, a flow with Ri > 1/4
is always stable in the linear approximation. For long IWs in stable shear flows, both KdV
and BO equation were obtained by several authors, among them BENNEY (1966), LEE &

BEARDSLEY (1974), MASLOWE & REDEKOPP (1980), GRIMSHAW (1981), SUVOROV (1981),
TUNG ET AL. (1981), GRIMSHAW ET AL. (2002b), and others. In particular, MASLOWE &
REDEKOPP (1980) have considered weakly nonlinear internal waves in continuously stratified
shear flows and showed that the generalized KdV and BO equations can be derived for long
waves in shallow and deep configurations, respectively, both with and without critical layers
(layers where the wave phase velocity coincides with the local velocity of the mean current).

In the Boussinesq approximation, the expressions -for the environmental coefficients of
the KdV equation (20) can be presented in the form [cf. (21) via (16)]:

3 0f ) dW)' 0 1 0 J (U-c2 z
a = -f (Uo-c)2  dz, f (Uo-c)2W2 dz, Q f dz.

-QH -z2_H -H d

(62)
The coefficients are calculated for a fixed internal mode with a given modal number n. Note
that the above-mentioned situation in which a = 0 is also possible here; the corresponding
modes satisfy the mKdV equation rather than KdV. Of course, a eKdV equation can also
be applicable in this environment. Some interesting models of stratified shear flows that
allow exact solutions for the Taylor-Goldstein equation (60) were considered by WEIDMAN

& VELARDE (1992). Other rare examples of analytically solvable models of shear flows are
mentioned in the book by TURNER (1973).

Thus, the existence of stable shear flows in stratified fluid leads to the essential compli-
cation of the problem because the more complex Taylor-Goldstein equation must be solved
for eigenvalues and eigenfunctions and more complex integrals, Eqs. (62), must be calculated
for the coefficients of the governing equations. At the same time, some stable shear flows
may support new types of waves, the "vorticity waves", which are very similar to internal
gravity waves and also occur inside the fluid. They may exist even in a homogeneous fluid
and may play an important role in the dynamics of the upper ocean. Below we present a
brief overview of these kind of waves as a specific example of waves on stable shear flows.

Consider a shear flow with a smooth monotonic profile without inflection points as de-
picted in Fig. 4 (shear flow of a "boundary layer type"). According to the inviscid linear
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theory of hydrodynamic stability, such a profile is stable with respect to small perturbations.
To fix the idea, we at, first approximated it by a piecewise-linear function as shown in Fig. 4
by the dashed line. Such a profile may occur, for example, in the upper ocean layer under
the action of a wind.

U (z)
0-

-2 hi

-4

-6

-8 0

0 0.5 1 1.5 2

Figure 4: Typical smooth monotonic shear flow profile (in some normalized variables) with-
out inflection points (solid line) and its piecewise-linear approximation (dashed line). Dots
are experimental data obtained under laboratory conditions. From (SHRIRA ET AL., 2005).

There are several peculiarities of the linear eigenmodes for such piecewise-linear velocity
profiles. For a homogeneous fluid the eigenvalue problem (60) reduces to the well-known
Rayleigh equation [see, e.g., (TURNER., 1973; LEBLOND & MYSAK, 1978)], which is a
particular case of the Taylor-Goldstein equation (60) with N = 0. It, was established by
Rayleigh that for smooth profiles without inflection points (like the one shown by solid line in
Fig. 4) the equation does not, possess a discrete spectrum of eigenvalues and eigenfunctions,
although there exists a continuum spectrum of eigenvalues and eigenfunctions which are
known as the Case-Dickey waves 11 . On the other hand, for a piecewise-linear profile like
that, shown in Fig. 4 by the dashed line, a discrete eigenvalue does exist. The corresponding
eigenmode is related to the vorticity jump at depth h and may be called the vorticity wave
(we recall that, the vorticity for a parallel shear flow is determined by the derivative of the
velocity profile U'(z)).

"H Such waves are also known in I)lasma physics as the Van Kampen-Case waves [see, e.g., (SHRIRA ET

AL., 2001) and references therein.]
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When a piecewise-linear profile is replaced with an even slightly smoothed profile, the

discrete eigenvalue of the Rayleigh equation corresponding to the vorticity jump disappears.

However, the continuous spectrum of eigenvalues and corresponding eigenmodes still exists
(they are a generic feature of any smooth shear flow profile). When the initial perturbation is

decomposed onto the set of eigenmodes of the continuous spectrum, their collective behavior

for a relatively long time looks like the evolution of the single eigenmode of the discrete
spectrum of the piecewise-linear velocity profile (SHRIRA, 1989; SHRIRA & SAZONOV,
2001; SAZONOV & SHRIRA, 2003). As was shown in the cited papers, the nonlinearity
further consolidates the eigenmodes of the continuous spectrum and makes their behavior still
more similar to the discrete eigenmode. Weakly nonlinear three-dimensional perturbations
propagating in the horizontal plane on the background of a "boundary layer type" shear flow
can be described by the following Shrira's equation (SHRIRA, 1989; VORONOVICH ET AL.,

1998B):

OA aA aA a
-- + c-- A - 0-d G(A) = 0. (63)
a9t ax a9X ax

where A(x, y, t) is a function which determines the dependence of all variables on the hor-
izontal coordinates (the details can be found in the above cited papers); in particular, the
longitudinal horizontal and vertical velocity components are, correspondingly,

u(x,y,z,t) = -A(x,y,t)U'(z) and w(x,y,z,t) = A(x,y,t)(U(z) - Uo).

Other parameters of the equation are c = U0 , a = U'(z)Jz=O, P = (U2 /U') Iz=O, and 0(...)
is in general a 2D integral operator defined by the formula

1 +00

4[2(r)] 2 JJQ (k) p(r')eik(r-r') dk dr', (64)

where r = (x, y), k = (kx, ky) and the kernel Q(k) = Ikl/tanh(IkIH). In the derivation of
Eq. (63) the total fluid depth H can be arbitrary but the thickness of the boundary layer h

is assumed to be small compared to the characteristic wavelength.
For plane perturbations in deep water, the integral kernel simplifies to Q(k) = kJ and

Shrira's equation (63) reduces to the BO equation. However, the plane waves are highly
anisotropic in the horizontal plane because their properties depend on the orientation with
respect to the direction of the basic shear flow. For linear harmonic waves the dispersion
relation has the form

w= (c- 3lkl)kx (65)

The characteristic property of Eq.(63) is that in the general case it possesses 2D solitary

wave solutions completely localized in space. They were first constructed numerically by
ABRAMYAN ET AL. (1992) [see also (VORONOVICH ET AL., 1998B)]. Such solutions, in
dimensionless variables (see details in the papers cited) have a circular symmetry. An analysis
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of the asymptotics of the solitary wave field far from its peak shows that, in the deep water
limit, it decays as r-2 (PELINOVSKY & SHRIRA, 1995), similar to the BO-solitons. The
characteristic spatial scale of such solitary wave is A - 0/(V - c), where V is the solitary
wave velocity.

Further investigations (D'YACHENKO & KUZNETSOV, 1994; PELINOVSKY & STEPA-

NYANTS, 1994; PELINOVSKY & SHRIRA, 1995; GAIDASHEV & ZHDANOV, 2004) showed
that within the framework of this model the solitary waves are unstable, i.e., upon being
slightly disturbed, they gradually build up. This instability has an "explosive" character, i.e.,
the soliton amplitude turns to infinity in a finite time whereas the wavelength simultaneously
tends to zero (such an instability in 2D- and 3D-cases is also called wave collapse). However,
for the slightly perturbed 2D solitary wave described above, the parameters change rather
gradually, for example, amplitude increases as qo - (T, - t)- 1/2, where T, is a characteristic
collapse time. In the process of evolution the soliton preserves its shape and adiabatically
grows to infinity. Numerical simulations (SHRIRA ET AL., 2005) showed that a growing
peak shaped like a circular 2D soliton, followed by a small-amplitude wave tail, eventually
emerges out of a very broad class of localized initial perturbations (Fig. 512). At some stage
the weakly nonlinear evolution equation (63) ceases to be applicable and the further fate of
the perturbations must be, apparently, studied within the framework of the set of primitive
hydrodynamic equations.

As the collapse instability is rather weak for solitons, they can exist for a relatively
long time and, perhaps, can be detected in the ocean (similar phenomena can also occur in
the atmospheric boundary layers). However, there are no observations of this in nature so
far, either in the atmosphere or ocean. Perhaps, an implicit indication of the existence of
vorticity waves in the oceanic mixed upper layers is the numerous observations of slicks on
the ocean surface when no internal waves were detected (surface signatures of internal waves
are discussed in detail in subsection 4.3 below). At, the same time, wave processes similar to
those described above were observed in laboratory experiments with an air boundary layer
above a flat plate in a wind tunnel (KACHANOV ET AL., 1993) and in a wind-wave water
tank (SHRIRA ET AL., 2005).

For oceanic conditions, estimates show that for a typical shear flow profile as presented
in Fig. 4 with h = I - 10m, U0 = 10 - 30cm/s, the parameters of a solitary wave are as
follows: the maximum longitudinal fluid velocity perturbation is =Ura= 1 - 3 cm/s; the wave
velocity is V = 15 - 60cm/s; the characteristic wavelength is A -_ 10m for h = 1 m and
A -_ 100 m for h - 10 i. It is quite realistic to detect such perturbations by, e.g., acoustical
methods. It, would be of interest to study contribution of such localized formations to the
turbulence of the upper ocean.

Another simplification of Eq. (63) can be realized for a shallow ocean when the character-
istic wavelength is mnuch greater than the total fluid depth, A > H. Then, the integral kernel
Q(k) P (1 + k12H 2 /3)/H, and integral operator G reduces to the 2D Laplacian operator. In
this case Shrira's equation (63) transforms to one of the generalizations of the KdV equation,

12This figure gives rather a qualitative illustration of the process described because a bit more general
equation containing smooth longitudinal inhlomogeneity was actually simulated.
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Figure 5: Evolution and collapse of a 2D Gaussian initial perturbation as described by
Eq. (63) in deep fluid. From (SHRIRA ET AL., 2005).

namely to the 2D version of the Zakharov-Kuznetsov equation (ZAKHAROV-KUZNETSOV,

1974). Two-dimensional stationary solutions of that equation were studied in many papers
with application to different types of waves [see, e.g., (VORONOVICH ET AL., 1998B) and
references therein].

Solitary solutions in the general case of an arbitrary depth fluid were constructed numeri-
cally in (VORONOVICH ET AL., 1998B). They are qualitatively analogous to the solution for
deep water; they decay monotonically and possess circular symmetry in the dimensionless
variables.

In the same paper a more general case was considered when in addition to the shear flow
there is also a density stratification in the ocean. In this case multiple resonances may occur
between the vorticity and internal waves.

Further theoretical development to the study of properties of nonlinear vorticity waves in
the context of their strong interaction with internal gravity waves was made in (VORONOVICH

ET AL., 1998A; SHRIRA ET AL., 2000; 2004; VORONOVICH ET AL., 2006) where the res-
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onance phenomena were studied in detail and, in particular, wave breaking of the coupled
vorticity and internal waves was considered over a sloping bottom. Such situation can occur
when, e.g., the wind induced shear current is oriented onshore.

Unstable flows. The situation becomes radically different when the basic flow is un-
stable, a condition that is possible if Ri < 1/4. Observational data testify that this does
take place in the ocean, although it is difficult to tell how frequently; see, for example,
(DESAUBIES & SMITH, 1982; PADMAN & JONES, 1985; SANDSTR6M ET AL., 1989;
BOGUCKI & GARRETT, 1993; BOYD ET AL., 1993). Typically, there are often near-
critical conditions in which the Richardson number is close to 1/4 because the surface wind
stress drives the near-surface layers and causes significant vertical shear in the mean flow.
Physical models of shear flows having smoothly varying density and velocity profiles are usu-
ally very difficult to handle in analytical form, even in the linear case. That is why simplified
approximations to the stratification and current, such as models having tangential disconti-
nuities and piecewise-linear profiles, are often used in theory (TURNER, 1973; LEBLOND &
MYSAK, 1978; CRAIK, 1985, REDEKOPP, 2002).

An interesting finding was made by THORPE (1969) who showed that fluid stratification
can destabilize some shear flows known to be stable in a uniform fluid (see also TURNER,
1973; MAKOV & STEPANYANTS, 1987). A similar phenomenon is known in fluid mechan-
ics since the 1920s, when W. Heisenberg discovered the destabilizing effect of viscosity in
boundary layers [see about this, e.g., in (BETCHOV & CRIMINALE, 1967)]. A physical
interpretation of this effect, can be done on the basis of a concept of negative energy waves
(NEW) (OSTROVSKY ET AL., 1986; STEPANYANTS & FABRIKANT, 1996). Some physical
insight of this concept can be obtained with the help of a simple model illustrating onset
of a radiative instability of NEW due to radiation of bulk internal waves from the pycno-
cline towards the deep ocean. This model relevant to some real oceanographic situations is
described below (OSTROVSKY & TSIMRING, 1981; OSTROVSKY ET AL., 1984a)).

Let us assume that, the tipper layer of the fluid is homogeneous over depth h, and moves
along the x-axis over a stratified lower layer of infinite depth, having N = const (Fig. 6).
The upper layer density is Pl, and its velocity is U. At, z < -h the stratification is P2 =

p, exp[-b(z + h)], so that the Brunt-Vfiisilý frequency is N = gVb = const, and the density
has a discontinuity, Ap = p, - Pi, at z = -h.

In this case, a simple way to derive the evolution equation for soliton dynamics is to start
from the dispersion equation for linear, sinusoidal wave trains, which at z < -h have the
form exp[i(kx + mz - At)], where m is the vertical component of the wave vector. Using the
linearized hydrodynamic equations, one can obtain a dispersion equation in the form

a(w - kU) 2 coth kh + w/ - N 2 - (1 - a)gk = 0, (66)

where a = pl/p,, and 7n2 = k2 (N 2 /w2 -1). The sign of the real part of m should be chosen so
as to assure that the wave radiation propagates downward from the level of the discontinuity.
Such a dispersion relation is shown in Fig. 7. One can see that for short waves (large k),
w is complex, a condition that yields an exponential growth of small perturbations. This
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Figure 6: Sketch of near-surface shear flow with tangential discontinuity of current velocity
in the model of a stratified ocean of infinite depth.

is a variant of the well-known Kelvin-Helmholtz instability. But the instability also exists
for longer waves, as it is also seen from Fig. 7. An important peculiarity of such waves,
the negative energy waves, is that their excitation actually decreases the total energy of the
system so that adding any real losses to the system leads to an instability (OSTROVSKY &
TSIMRING, 1981; OSTROVSKY ET AL., 1986). In the case considered, NEW correspond to
the lower branch of the dispersion curve (Fig. 7), and losses are associated with the radiation
of bulk internal waves from the interface boundary downward into the lower layer, which
again results in a complex frequency, w.

If U > U" = VI(1 - a)gh/a, the instability associated with negative energy waves takes
place starting at k = 0 (Fig. 7). For the lower branch of the dispersion relation shown
schematically in Fig. 7, the dependency w((k) can be readily derived from Eq. (66) in the
limit k -+ 0:

w(k) - ck + 0k3 , (67)

where parameters c and /3 are complex in general. It is important to note that the other
mode, corresponding to the upper branch of the dispersion curve shown Fig. 7 and having
positive energy, is not localized at all: its grows up to infinity as z -+ -oc. Actually, one
has to solve a nonstationary initial-value problem in order to describe the evolution of these
types of waves .

Note that in the absence of the current, the dynamics of long, weakly nonlinear interfacial
waves in the above model is described by the BO equation complemented by an integral term
responsible for the radiation losses (MASLOWE & REDEKOPP, 1980; GRIMSHAW, 1981,
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Figure 7: Real (Dr) and imaginary (Dj) parts of the complex dispersion relation, Eq. (66), in
dimensionless variables: Wr,i = w,,i•/i](1 - a)g, and K = kh, for two values of dimensionless

velocity, U U/ (1 - a)gh,. (1) U < U,,; (2) U > Ucr.

2002). Naturally, in this model all wave modes are of positive energy. Soliton damping
due to radiation has a complex character and, as calculated in the papers cited above, the
damping is rather strong for typical oceanic conditions so that the damping time may be
comparable with the intrinsic soliton time scale. This is one of possible reasons of relative
scarcity of internal solitary waves observed in the deep ocean.
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Evidently, there are many other possible mechanisms of wave dissipation, especially in

the upper layer. As already mentioned, these losses can be due to viscosity, turbulence, and

diffusion. A study of these effects carried out by OSTROVSKY & SOUSTOVA (1979) showed

that for long waves, the imaginary part of the frequency is given by

)glz(l a) (68)

Here H is the vertical buoyancy flux, 6 t is the turbulent viscosity coefficient, and lz is the

vertical scale of turbulence. Considering the dispersion relation, Eq. (67), together with the

dissipative contribution, Eq. (68), one can reconstruct an evolution equation for the long

progressive waves in the form of a generalized KdV equation augmented by small dissipa-

tive terms. Each term, responsible for nonlinearty, dispersion, and dissipation, is additive

and can be derived separately. Such method of derivation of evolution equations from lin-

ear dispersion relations is widely used; see, for example, (WHITHAM, 1974; KORPEL &

BANERJEE, 1984). The following model equation was derived in this fashion (OSTROVSKY

ET AL., 1984b):

at 09X ax 1X3 OX 2  ir-ax- 1 (x', t) x'
S+cr +• /3 = 6 a6t2 ±T• 2 -• (69)

Here17 is again the displacement of the interface, Cr = Re(c), c= Im(c), /, = Re(!5), and

a• = 3Ucr/2h; the principal value of the integral is to be taken. It should be noted that

the integral term has the same structure as that corresponding to Landau damping of ion

acoustic waves in a plasma (KARPMAN, 1973), but has the opposite sign, i.e. it causes

amplification.
For the case when the right-hand side of this equation is small, it is again possible to

construct solutions for solitons with slowly varying parameters by multiplying Eq. (69) by 71

and integrating over x, as was done above. The resulting equation for the soliton amplitude

r70 has the form (OSTROVSKY ET AL., 1984b)

- 4 = __c% (70)

dt - 3-r/° + 2.92k ý12 45_ _

This equation has three equilibrium states determined by zeros of its right-hand side.

Two of them, 770, = 0 and 7q03 • 0, are stable, whereas the intermediate state, r702 < 170 < 1703,

is unstable. Thus, there exists a "hard "regime of amplification: Small-magnitude solitons

with 170 < 1q02 are damped, whereas larger ones asymptotically reach the limiting magnitude

7103 (Fig. 8).

The exact solution to this equation can be presented in the implicit form; in dimensionless

variables it reads:
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Figure 8: Soliton amplitude versus time in dimensionless variables as given by Eq. (70) for
three different initial conditions (1 - 0 = 0.5; 2 - u0 = 0.57 and 3 - uO = 3.0). Normalized
variables are: u = , T = 4=/3, 2.1.
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(71)
where the normalized variables are:

4 a't 3 2.92V/5 ci cir= -d, V =r 1`)l, -0.=78r
3 150/3 8 At T6

and u0 - 7o(0) is the initial value of soliton amplitude. Note also that at c - 0, we obtain
the "soft," regime (702 = 0). Small solitons with 7?02 < 770 < N303 initially grow according the
"explosive"law [cf. Eqs. (53) and (56)]

(1 r(0) 27 30
7"o (1- t/lT) 2 ' 1.46ciV 77o(0)' (72)

where ?70(0) is the initial soliton amplitude, and T, is the "explosion time" during which
/0 -ý oc. However, toward the end of this stage the soliton amplitude growth is slowed down

and the amplitude reaches its stationary value, 703, as may be seen in Fig. 8.
Estimates of the magnitude of such an effect for the ocean seem reasonable. If we accept

the parameters of the model to be Ap/p = 10-3, N =5 . 10-3 s-1, and U = 1.1Ucr, then
for h1 - 10 - 50 m, the radiative instability is most pronounced for wavelengths of order
100-1000 m, which correspond (for the wave on the flow) to time scales of 20-200 min. The
characteristic time of the development, of the instability is of the order of 20 h in this case.
This may be considered as one of the possible mechanisms for the generation of internal
wave trains in the ocean.
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This theory has serious limitations for real cases because of the fact that the maximal
growth rate is realized for shorter waves (see Fig. 7), which may result in the generation of
billow turbulence and mixing in the region of the density interface. Nevertheless, the larger-
scale instability described above may still exist on such a short-scale billow background.

3.7 Nonlinear Waves in Rotating Ocean

For the description of mesoscale processes having spatial scales of a few kilometers or more
and time durations of an hour or more, the effects of the Earth's rotation become significant.
There arise some radically new elements in the behavior of nonlinear waves in this case.
The important new variable is the Coriolis parameter f which defines the lowest possible
frequency of surface and internal gravity waves; these are also sometimes called gyroscopic or
inertial gravity waves. For frequencies close to f, long-wave dispersion plays a major role13 .
A sketch of the dispersion relation for such linear harmonic waves is presented on Fig. 9. It
should be emphasized that we are restricting our attention to waves with frequencies above
f, where f is assumed to be constant (f-plane approximation). As was already mentioned,
Rossby waves for which the meridional dependence of the Coriolis force must be taken into
account (/3-plane approximation) also exist in a rotating fluid, but their frequencies lie below
f.

102 2

G

C
a> 101
C-

LL

1 01100 101 102

Wavenumber, ic

Figure 9: Dispersion curve for waves in a rotating fluid. The graph is plotted in the log-
log scale in dimensionless variables: D = w/f, K = ck/f with Of 2 /c3 = 10-'. Line 1 -
dispersion curve as described by Eq. (73) below, line 2 - the dispersionless approximation,
w -_ ck.

Equations (14) and (15) may be used for the description of gyroscopic waves. Moreover,
for waves with their frequency spectrum lying in the interval between f and the maximum
Brunt-VWisd1d frequency, Nmax, but not too close to either of these parameters, both the low-

13 An analogous situation occurs for electromagnetic and acoustic waves in waveguides.
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and high-frequency dispersion effects are small. An adequate partial differential equation
may again be obtained from the dispersion relation for linear waves in the limit of weak
dispersion, namely

f 2

w ck - /3 + 2ck' (73)

from which the evolution equation follows in the form

+ (077 + aqO?] 073r] f2

(74)

This equation was firstly derived by OSTROVSKY (1978), and was then reproduced
and analyzed in many subsequent papers [see, e.g. (LEONOV, 1981; REDEKOPP, 1983;
GRIMSHAW, 1985; KATSIS & AKYLAS, 1987; GERMAIN & RENOUARD, 1991; ETC.)].

In the absence of rotation (f = 0), it reduces to the KdV equation (20), so that Eq. (74)
may be called rotationally modified KdV or briefly rKdV equation 14 . An analogous equation
with 3 = 0 was obtained for different types of waves, including inertial-gravity waves in the
ocean (MUZYLEV, 1982), any kind of waves in random media (BENILOV & PELINOVSKY,

1988), waves in relaxing media (VAKHNENKO, 1999).
Unlike the above model equations, Eq. (74) is apparently not completely integrable. Still,

for periodic and localized solutions, it possesses a series of useful integrals such as an energy
integral. It also has a "zero-mass" integral, M = 0, where for a localized solution the wave
"mass" is defined in Eq. (28); for periodic solutions this condition is also true provided the
integration is taken over the wave period. Note that for previously considered equations such
as the KdV, mKdV, eKdV, BO and JKKD equations, this "mass" integral is an arbitrary
constant but not necessarily zero.

Some other definite integrals for this equation, which are actually the constraints, are
presented in (GRIMSHAW ET AL., 1998A) including those found by BENILOV (1992) and
having the form of momenta. The simplest among them is

Sxr(x, t) dx =0.

It is also easy to generalize the rKdV equation for a 2D case to obtain a rotationally
modified KP (RKP) equation:

(9 (9rq 077 077 oa37 ) f2 c (9277
+cc + 07 (75)

ax at a~x ax ax,)2c 2 y2'

This equation was also derived by OSTROVSKY (1978) and then reproduced by GRIM-

SHAW (1985) and other authors.

"4It, is also referred to in many papers as the Ostrovsky equation [see, e.g. (GILMAN ET AL., 1995; NEW

& ESTEBAN, 1999; BOYD & CHEN, 2002; FRAUNIE & STEPANYANTS, 2002; GRIMSHAW, 2002; Liu &
VARLAMOV, 2004)].
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Exact analytical solutions for even the stationary version of Eq. (74) are unknown (except

for the steady wave of the parabolic profile, see below). However, many of the solutions have

been investigated numerically by now.
A relatively simple analysis can be performed if the high-frequency dispersion (the term

with /) is neglected, which is possible for sufficiently long waves. Then, a second-order

equation results, which for stationary solutions depending on x - Vt yields

S[(c - V + c07/) ]-• " (76)

Similar equation arises from the particular case of nonlinear Klein-Gordon equation which

describes elastic waves in bending rods propagating in opposite directions ["two-directional"

wave equation (RYBAK & SKRYNNIKOV, 1990)].
Stationary solutions of Eq. (76) can be analyzed on the phase plane of the variables q

and dl/d6 [see details in (OSTROVSKY, 1978; GRIMSHAW ET AL., 1998A; STEPANYANTS,

2006)]. There exists a family of periodic solutions to this reduced equation whose shape
varies from sinusoidal to parabolic. The wave of limiting amplitude has sharp crests and is
represented by a periodical sequence of parabolic arcs. Note that each arc itself is also a

solution of the full Eq. (74) with the high-frequency dispersion:

f2 i (6 _ 02 A < 0<A (77)S-12ac - 12 ' 2 - - 2

In 1996 Gerkema (GERKEMA, 1996) derived for small-amplitude long waves in two-

layer fluid a "two-directional" generalization of equation Eq. (74), the rotation modified
Boussinesq equation which is capable to describe waves in opposite directions. Later, on the

basis of Lee & Beardsley (1974) approach, the same equation was derived by New & Esteban
(1999) for an arbitrarily stratified fluid. In terms of the lateral component, A(x,t), of the

stream function, T (x, z, t) = A(x, t)D(z), the equation has the form

02A 2 &2 A 04A 92A2
Ot2  c x - 8t 2 x2 + f2A = rox 2  (78)

where the expressions for coefficients r and s can be found in (NEW & ESTEBAN, 1999).
For waves propagating only in one direction this equation readily reduces to Eq. (74) with

a = r/c and / = cs/2 assuming additionally that the rotation effect is of the same order
of smallness as the nonlinear and finite-depth dispersion effects. Note, that for long plane
waves of small but finite amplitude Eq. (78) is physically equivalent to the Boussinesq set of

equations, Eqs. (4)-(7), i.e. it is obtained in the same approximations on the smallness of
nonlinearity and finite-depth dispersion. The rotation effect which is supposed to be small

enough to neglect by centrifugal effect, still could be essentially greater than the nonlinear

and finite-depth dispersion effects. In other words, the Boussinesq set of equations as well as
Eq. (78) are applicable not only for dispersionless waves or waves slightly affected by finite-

depth dispersion as shown in Fig. (9), but also for infinitely long waves which are strongly
affected by Coriolis dispersion.
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Internal waves in a two-layer rotating fluid were also studied in (PLOUGONVEN &
ZEITLIN, 2003; ZEITLIN ET AL., 2003). Following Shrira's approach (SHRIRA, 1981;
1986) developed for strongly nonlinear surface waves in a rotating fluid, they considered
stationary periodic solutions for interfacial waves without high-frequency dispersion and
then numerically constructed wave shapes. The analysis of the stability of such nonlinear
periodic waves was examined by means of numerical simulation (BOUCHUT ET AL., 2004).
It has been demonstrated that the nonlinear waves are stable at least with respect to a
certain class of initial perturbations and, moreover, large-amplitude waves can evolve from

the initial perturbations.
An important peculiarity of equations Eq. (74) and Eq. (78) is that for the high-frequency

dispersion characteristic of oceanic waves (when the coefficient /3 in Eq. (74) is positive),
solitary waves in the form of stationary localized pulses cannot exist at all (LEONOV, 1981;
GALKIN & STEPANYANTS, 1991; Liu & VARLAMOV, 2004). Physical interpretation of
this "antisolitonr theorem"is rather simple: due to rotational dispersion, there is always a
resonance (phase synchronism) between a source moving at an arbitrary speed and linear

perturbations. This resonance leads to a wave radiation from the soliton so that it can not
remain stationary. The same is true for smooth solutions of the reduced form of Eq. (74) at
3 = 0. However, in the latter case, non-analytic solitary structures with derivative jumps
can exist in the form of smooth-head solitons, sharp-crest solitons ("cuspons"), loop solitons
and "compactons" (solitons determined on a compact support) (OSTROVSKY, 1978; RYBAK

& SKRYNNIKOV, 1990; VAKHNENKO 1992; STEPANYANTS, 2006; PARKES, 2005). These
solitons consist, of several matched pieces of separate branches of solutions.

In addition to the stationary solutions mentioned above, some non-stationary solutions
for the rKdV equation have also been studied, mostly numerically (OSTROVSKY & STEPA-

NYANTS, 1990; GILMAN ET AL., 1996). It was observed, in particular, that the initial
KdV-type solitary perturbation undergoes a "terminal decay", i.e. it completely annihi-
lates (more exactly, transforms into radiation) in a finite time (GRIMSHAW ET AL, 1998A;

GRIMSHAW ET AL, 1998B). The "extinction time" of a KdV soliton was estimated for real
oceanic conditions. It amounts about one day for the first internal mode, and is larger for
the higher modes. Note, that this is in rough agreement with the observation that solitons
can exist in the oceans for a few days (see, e.g., the typical lifetime of a soliton packet, Tlife,

in Table 2, Section 4.1).
In the process of soliton decay, at the rear part of the initial impulse, a new soliton-like

perturbation is generated from the radiative tail as shown in Fig. 10. Its shape is close to
the initial KdV soliton. This impulse shares the fate of the initial soliton, i.e. it terminally
decays in a finite time, then generating a new pulse-type perturbation in its rear part, and so
on. Such process resembles some sort of the recurrence phenomenon well-known for the KdV
model [see, e.g. (ABLOWITZ & SEGUR, 1981)]. During this process, the soliton background
tends towards a parabolic shape.

Another interesting example of a non-stationary wave propagation within the framework
of rKdV equation is shown in Fig. 11 GILMAN ET AL., 1996). This example shows that
despite of antisoliton theorem (LEONOV, 1981; GALKIN & STEPANYANTS, 1991) which
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Figure 10: Evolution of a KdV soliton on a constant negative background within the frame-

work of the rKdV equation. Numbers near the wave crests indicate the time in dimensionless
variables. From GILMAN ET AL., 1996).

forbids the existence of stationary solitary waves, the non-stationary large-amplitude solitary

waves can co-exist with smooth periodic waves of small amplitude. Solitary wave shape is
very close to KdV soliton, and its amplitude and other related parameters vary adiabatically

in time and space.
Related equations were also obtained for deep rotating fluids. One of them is a ge-

neralization of the BO equation for a very deep ocean having a relatively thin pycnocline

(GRIMSHAW, 1985):

a (a?, +~ Ca7 ~l 6 92 f 2

+ - ±c + v N + Pv [ 7 de = (79)

Estimates show that the role of rotation is important for real internal waves in the ocean

that have lengths of a few kilometers and more and periods in excess of roughly one hour.

Computations of a modification of the Boussinesq-type equations with rotational terms (cf.
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Figure 11: Adiabatic interaction of a strong KdV soliton with a weak periodic wave of
quasi-parabolic profile within the framework of the rKdV equation. From GILMAN ET AL.,

1996).

Eqs.(14) and (15)) have been made by GERKEMA (1994) and GERKEMA & ZIMMERMAN

(1995). They have shown that the process of nonlinear internal wave generation by a tide can
be strongly affected by rotation. In particular, the amount of solitons generated at each tidal
period typically decreases due to rotation. GERKEMA (1994) analyzed the role of rotation
for some observations and found it to be significant. for moderate and high latitudes.

3.8 Strongly Nonlinear Waves

In previous sections, both nonlinearity and dispersion were considered small in the sense
that in, e.g. a two-layer fluid, the displacement of the pycnocline is significantly smaller
than its equilibrium depth (or, for a pycnocline close to the bottom, than its height over
the bottom). Along with a number of observations for which the weakly nonlinear models

provide a good approximation, there is also a growing number of data for which they are
evidently wrong (see the experimental Section 4 for examples). Note that, the transition from
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the KdV equation to the eKdV-type equation has been suggested by LEE AND BEARDSLEY

(1974) to improve theoretical description of Halpern's observations (HALPERN, 1971). As
was mentioned above, the eKdV model sometimes may serve as a phenomenological model
for strong solitons because, as in the more consistent theories, it predicts much wider solitons
than those which follow from the KdV equation for strong waves.

A more consistent description of strongly nonlinear internal waves can be based on direct
numerical simulation for the basic hydrodynamic equations. For 2D steady-state waves in
the Boussinesq approximation, the basic Euler equations, Eqs. (4) to (7), can be reduced to
a single equation for the stream function, T, as shown as early as in 1930s by DUBRIEL-

JACOTIN (1932) and later independently by LONG (1953):

92qjp a2 X N 2 (Z-_ T/V)
0 ±+ 0 + - V = 0. (80)aý2 + Z2  V2

Here { x - Vt, N(z) is the known buoyancy frequency, and the velocity components are
u = OP/Oz and w = -0q'/0x. It is seen that at N(z) = const, the steady waves (but only
them!) are described by a linear equation, as mentioned above for weakly nonlinear waves.

To describe strongly nonlinear internal waves, direct numerical simulation for the basic
hydrodynamic equations has been used. In particular, many numerical works have considered
steady waves in a two-layer fluid. For this case, the linear Laplace equation can be used
for each layer. The first study using this approach was probably the paper by AMICK

& TURNER (1986) [see also (TURNER & VANDEN-BROECK, 1988)]. In addition to a
detailed mathematical treatment of the problem, they have shown that there exists a limiting
amplitude at which a soliton acquires a flat top and tends to two separated kinks, similar to
the case of the eKdV equation but with different parameters. The amplitude and velocity
of such a limiting soliton are

770m h 1 - h2a hi - h2(81)?']li = 1 + V/a- 2 (1

Vim vg(1 - a)(hl + h2) v/g'(hl + h2) (82)=i 1l+ ý/a_ - 2 ' 82

where a = P1/P2 < 1, g' = g(1 - a), and positive displacement is upward. The relations on
the right are valid for oceanic conditions where density variation is always small, i.e., a - 1.

Subsequently, direct numerical analysis of the two-layer case as applied to stationary
solitary waves was performed by many authors [see, e.g. (EVANS & FORD, 1996; GRUE ET

AL., 1999)]. As an example, Fig 12 shows calculations of soliton profiles for the two-layer
fluid using the parameters chosen by EVANS & FORD (1996) [see also the paper by Evans
in (DUDA & FARMER, 1999)].

More recently, calculations of solitary waves in a sea with smooth stratification have been
performed. In particular, VLASENKO ET AL, (2000) calculated some practical cases, taking
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Figure 12: Normalized soliton profiles for the two-layer fluid with h2/hl 3, PI/P2 0.997
(surface is at +1; bottom at -3 on the vertical axis). The profiles shown correspond to
different soliton amplitudes, -- 7o/hl = 0.05; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.925;
0.95; 0.975; and 0.99. The dashed horizontal line marks the level of limiting amplitude wave.
From (EVANS & FORD, 1996).

the data from observation. They considered a stratified layer with different density profiles,
including those of a pycnocline type and some smoother ones, and calculated stationary soli-
ton structures using the Euler equations for vorticity and density. Qualitatively their results
or soliton width and velocity correspond to the two-layer approximation but quantitatively,
they differ significantly from both the two-layer, strongly nonlinear model, and from the
weakly nonlinear KdV model for the stratifications used in the work.

Also, some non-steady, strongly nonlinear processes have been studied by direct numerical
simulation. VLASENKO & HUTTER (2002AB) have modelled the shoaling of long internal
waves in a coastal area. These processes include steepening, formation of soliton groups, and
breaking, with the associated generation of turbulence (Fig. 13).
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LAMB (2002, 2003) has shown that shoaling of a solitary wave can result in the formation
of a trapped core that was observed long before in the laboratory experiment by DAVIS

& AcRIvos (1967). STASTNA & LAMB (2002) have also numerically investigated soliton
propagation on shear currents. For a linear shear current of a constant vorticity, they found
asymmetry in the internal solitary wave propagation, specifically the wave propagating in one
direction is taller and narrower than the wave propagating in the opposite direction. Their
numerical study also showed that the maximum wave amplitude solution approaches the
conjugate flow limit or a kink-type solution. At the same time, wave breaking phenomena
and shear instability are also possible for some parameters. BREYIANNIS ET AL., 1993
numerically studied internal waves in two-layer fluid with a linear shear flow. Although their
method is applicable for the general case, they focussed on surface waves at the air-water
interface, where a large density jump occurs, and also added wind of constant velocity in the
upper layer.

Direct numerical computations are usually time-costly and, what is perhaps more impor-
tant, they do not provide physical insight into the problem. At the same time, the analysis
of observational data shows that, although wave amplitudes are often so big that there is
no small parameter allowing one to construct a weakly nonlinear model, in many cases the
wavelength remains larger than the thickness of one of the layers or of the total ocean depth,
especially in the coastal zones. For these cases, a long-wave approximation can be developed
that uses the corresponding expansion of dispersive terms while keeping a strong nonlinear-
ity. This approach was first suggested for surface waves by WHITHAM (1967) who used a
Lagrangian representation of the primitive hydrodynamic equations. He derived a model
equation by means of perturbation methods based on the expansion of the Lagrangian (The
later work by GREEN & NAGHDI (1976) that included a sloping bottom should also be
mentioned). We shall concentrate further in this section on long-wave models in which the
explicit dependence on the vertical coordinate is eliminated.

For internal waves, MIYATA (1985, 1988, 2000) was apparently the first who suggested
(albeit, without a detailed derivation) the long-wave equations for strongly nonlinear, weakly
dispersive waves in a two-layer fluid, and analyzed a steady solitary solution of these equa-
tions. Miyata's equations, together with other weakly nonlinear models, KdV, eKdV, BC
and JKKD, were examined against numerical calculations in (Miyata, 1988; Michallet &
Barthflemy, 1998). It, was shown in particular that, as expected, the eKdV works well when
the pycnocline is close to the middle of the water layer, whereas Miyata's model agrees
very well with numerical data for fully nonlinear hydrodynamic equations practically in the
full range of wave amplitudes (except for those very close to the limiting amplitude where
numerical results may themselves become erroneous).

A detailed analysis of the same problem for a two-layer fluid (including the case when
the lower layer is infinitely deep) was performed by CHOI & CAMASSA (1996, 1999). For
shallow water, these equations (essentially the same as those obtained by Miyata), being
reduced to the case of a small density jump, Ap << P1,2, can be represented in the form

0-7 + - [(hl -+- T)?1 0, (83)
at Ox
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017 0
0.0+[(h2 - = 0- (84)

0(iu2  u1  0u2  ,017

0(ul U2) + + = D, (85)at ax -9x ax
where

(hl1+17)3 [2L+ U~a)u _ (a,2] Aýh_ ,)3 [22u + U 2 17Y'j2 _ 2.9 2 O)] 21

3(h, + TI ) 3(h 2  -7)

Here the z-axis is directed downwards, and U1 ,2 are the horizontal velocities in the layers,
each averaged over the layer thickness.

A more consistent derivation of the long-wave, strongly nonlinear model, Eqs. (83)-(85),
in the Boussinesq approximation (Ap -+ 0) has been provided by (OSTROVSKY & GRUE,

2003) on the basis of the (aforementioned) Whitham's Lagrangian approach.
For a stationary soliton in which all dependent variables depend on one "running coordi-

nate" x - Vt, this system can be reduced to a second-order ODE, the first integral of which
gives

dr7 3 [(h, + h2) - g'(ht + 71)(h2 -7)/V2]

dx - h2(h 2 - n1) + h2(h, ± ) ' (86)

where different signs correspond to the frontal and trailing edges of a soliton, respectively.
In particular, the soliton velocity is related to its amplitude 7o0 by

V2 - g'(h I o)- r0(h2 - 710) (87)
hi + h 2

Note that this latter expression differs from the linear long-wave velocity, Eq. (11), only in
that instead of the non-perturbed depths, h1,2, those at the soliton peak, h, + 770 and h2 --70,

are taken. The maximum possible amplitude of a soliton in this approximation coincides
with that presented by Eq. (81). The solitary wave solution of this equation shows very
good agreement with laboratory experiments and numerical solutions of the full set of Euler
equations (CAMASSA ET AL., 2006). Later, Jo & CHOI (2002) studied the above system
numerically to describe non-stationary processes, such as soliton formation, interaction, and
propagation over non-uniform topography.

A similar method was used by VORONOVICH (2003) to find stationary solitary solutions
in a two-layer fluid when each layer is stratified in such a way that the buoyancy frequency,
N, is constant in each layer (a "2.5-layer model"). For steady waves, each layer is described
by a linear equation (80) so that nonlinearity is again due to the interface. Note that in this
case the solution may include an internal vortex core.

Yet another model for large-amplitude long interfacial waves in a two-layer fluid of finite
depth was derived by CRAIG ET AL. (2004). The displacement of the interface between the
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layers was assumed to be of small slope, i.e., 770/A < 1, where r/o is the wave amplitude and
A is the wavelength, but no smallness assumption was made on the wave amplitude. Based
on Hamiltonian representations of the primitive set of hydrodynamic equations, a pair of
coupled equations for the interface displacement and fluid velocity was derived by means
of a perturbation method. The equations contain fairly complex nonlinear-dispersive terms
and their solutions have not been analyzed so far. The comparison of this model with the
earlier derived ones has also not, been analyzed so far.

3.8.1 Non-dispersive Waves and Evolution Equations

The set Eqs. (83) and (85) is two-directional and can be considered as a strongly nonlinear
extension of the Boussinesq equations in the two-layer case. In applications, one usually deals
with waves propagating in one direction from a source, such as a shelf break, transforming a
part of the energy of the barotropic tides into internal waves propagating onshore. Hence, an
important problem is to obtain an evolution equation for a wave propagating in one direction,
i.e. a strongly nonlinear analog of the KdV or eKdV equations. Besides simplifying analytical
considerations and making the result more physically clear, this may also significantly save
computer time in practical applications. This seems to be especially attractive for strongly
nonlinear waves, the equations of which are typically non-integrable.

This problem was discussed by OSTROVSKY (1999) and addressed in detail in OSTRO-
VSKY & GRUE (2003). The approach starts from the exact non-dispersive limit for long
waves when the term D in Eq. (85) is neglected. In this case, a progressive (simple, or
Riemann) nonlinear wave exists which propagates with a nonlinear velocity c(r7), and all
variables are functionally related: U1, 2 u 1,2(rT), so that

&-,+ C± 0. (88)

Here, two possible simple wave velocities exist, (SANDSTR6M & QUON, 1993):

C± (r/) [ -(11 2  ( ) 91H (I, + ?7) (112 - - uH 2 (Il ) (89)
It /1 - 1/ 2 - q7

where H = -l + 112, and the variables are related by an equation

du- - C(r= ) - Ul (90)
dr7- tl + 77

As shown by SLUNYAEV ET AL. (2003), these relations can be expressed in an explicit
form for the simple wave velocity which reads as

±c 1 + 3(111 - h2) (h1 - 112 - 2rl) [/(h1 - r +) (h'+17) /12 - hi + 27l] (91)
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where c is the linear velocity of long waves given by Eq. (24).

As pointed out in the cited paper, the velocity of a simple wave reduces to the linear wave

velocity in two cases, when the perturbation is infinitesimal, -+ 0, and when 17 = (h 2-hl)/2;

it is worth noting that the latter formula determines the limiting amplitude, qTlim, of a soliton.

These results are exact for a non-dispersive wave in a two-layer fluid. Similar to the

gas dynamics case (LANDAU & LIFSHITZ, 1988), the basic non-dispersive equations can be

rewritten in terms of Riemann invariants, I± = ul + U±(i7), where U± correspond to the

above dependencies between ul and 7 in a simple wave, and the signs ± correspond to the

signs at the radical in Eq. (89). As is known from the theory of hyperbolic equations, the

progressive wave of Eq. (88) corresponds to the case when one of the invariants, e.g. I-,

turns to a constant, in our case zero. The latter condition defines a relationship between the

variables equivalent to Eq. (90), and their use in the equation for I+ results in a simple wave
Eq. (88).

Returning to the full set of equations (83)-(85) in which the dispersive operator D is

non-zero but small, for the wave propagating in a positive direction, the invariant I- is also

small, of order D. As a result, Eq. (88) is modified to give (OSTROVSKY & GRUE, 2003)

C' DI(7) = D(7h) h1+7r h2 -7r (92)

n + C )r dI+o/d 1  C - C_ hi + h2(

Here C± correspond to the signs in Eq. (91).

In (OSTROVSKY & GRUE, 2003) steadily propagating solitary solutions of this equation

were found for the specific but practically important case of h, K< h2. These solutions differ

noticeably from those of the two-directional Choi-Camassa equations considered above.

3.8.2 Simplified Evolution Equation (/-model)

It must be emphasized that, unlike in the weakly nonlinear case, the long-wave approxi-

mations for surface and internal waves considered above (both two-and one-directional) are

of a somewhat contradictory nature. Indeed, these equations combine strong nonlinearity
and weak dispersion, whereas a soliton exists as a balance between the nonlinearity and

dispersion, so that it is a priori unclear whether a strong soliton would be long enough to
provide sufficiently small dispersion terms and thus secure the applicability of the shallow-

water approximation. Considering this, in (OSTROVSKY, 1999) a different approach to

obtaining an evolution equation was suggested. Namely, the exact non-dispersive operator
is retained unchanged but a dispersive term is represented in a semi-phenomenological form

based on slowness of the displacement variation. For strongly nonlinear waves, along with

the exact long-wave velocity c(77) defined by (89), we introduce a local dispersion parameter
corresponding to that in KdV, but with the instantaneous values of the layer depths:

0 = 1C (n)(h, +J n])(h2 - 77).- (93)

As a result, a strongly nonlinear evolution equation (/3-model) reads
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art 0 Ox 0rI] S+C 0 +y jj(I)2 0. (4

Detailed comparisons between solitary solutions following from different long-wave mo-
dels, direct fully nonlinear computations, and observational data, were presented in (OST-
ROVSKY & GRUE, 2003). An example is shown in Fig. 14. The particle velocity and soliton
propagation velocity are approximated very well by the long-wave equations. As regards
the soliton profile and width, for a moderate depth ratio, h2/hl, both two-directional Choi-
Camassa (CC) model and the evolution 0-model are quite satisfactory.
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Figure 14: Normalized soliton velocity versus normalized amplitude for h2/h = 20.4
(COPE). Solid line- fully nonlinear numerical solution, crosses - 0-model (CC-model gives
very close results), dotted line - fflly nonlinear calculations for h2/h, = 500 (i.e., practi-
cally infinitely deep lower layer). Filled square - observation. From (OSTROVSKY & GRUE,

2003).

Note that all one-directional models have a common disadvantage: they do not exactly
conserve mass and energy at the same time. In particular, Eq. (92) conserves neither, and
Eq. (94) conserves only mass (although energy is close to constant, as well). Its modification,
the "e-model" also used in (OSTROVSKY & GRUE, 2003) conserves energy but allows slight
variations of mass. Fortunately, solutions of the 0- and e-equations are typically close to
each other. As a fuirther development, the 73-model was expanded to the case of a shelf with
a sloping bottom, and was verified by direct numerical simulation in (VLASENKO ET AL.,

2005), where the adiabatic transformation of strong solitons was demonstrated.
For a very large depth ratio their applicability is limited because the basin is not always

shallow enough for the solitons. In these cases the following deep-layer model may work
better.
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3.8.3 Deep Lower Layer

Another limiting case when the lower layer is infinitely deep but the wave is still long as

compared to the upper layer; for weak nonlinearity, this is the case for which the B0 equation,
(41), has been derived. In a two-directional, weakly dispersive form the corresponding long-
wave equations were obtained by CHOI & CAMASSA (1996). They considered the upper
layer nonlinear but non-dispersive and the lower fluid dispersive but linear, and obtained the

equations in the form (here we again use the limit of a small density jump across the density
interface)

077 0
-+ O [(hi + /7)ul] = 0, (95)

aul ul ,017 1 0 a0277(t, ) d6
+g = J a2 -x (96)

-00

Here, the same restrictions on the applicability of the dispersive term should again be im-
posed. In (OSTROVSKY & GRUE, 2003) an evolution equation generalizing the BO equation
for strong nonlinearity has been suggested in the form

/+ 077) 77 + 1 7 O1/(t,) Y[7[(t, ) 0. (97)at-ax _ _ Ox' 6-x
-00)

where C(r/) = g'h, (3/1 + /lh1 - 2) is the simple wave velocity (89) taken in the limit of

h1 /h 2 --+ 0, and -y(77) = !C( 17 )(hl + 77) generalizes the corresponding parameter of the BO

equation in the same manner as it has been done above for the p-model. This equation gives
a very good agreement with direct computations, at least for moderate soliton amplitudes,
up to 770 0.8hl.

In view of the growing number of observations of strong solitons in the ocean (see the
experimental part below) and the increasing role of coastal areas, the theory of strongly
nonlinear internal waves should be considered as an important branch of theoretical physical

oceanography.

4 Experimental observations in the oceans

Observations of nonlinear internal waves close to solitons or their groups (solibores) are
numerous and these measurements are being actively performed now. It is impossible to

even mention all them. Here we discuss some examples, specifically a few of the pioneering
ones and also a few recent experiments. More observational data can be found in (DUDA &

FARMER, 1999; SABININ & SEREBRYANY, 2005), and in the Internet Atlas (JACKSON &

APEL, 2004).
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4.1 Internal Solitons Near the Continents

With the advent of satellites that carry high-resolution imaging systems (e.g., Landsat,
Seasat, and subsequent spacecraft), it has been possible to obtain overviews of certain pro-
cesses occurring in the sea that have distinguishable surface signatures. Such phenomena
include coherent internal waves. The combination of the methods of satellite oceanography,
underwater acoustics, and in situ measurements has enabled considerable progress to be
made in understanding the kinematics and dynamics of these waves. The Olympian view
provided by the satellite remote observations has allowed careful planning of subsequent in
situ experiments to be done, with the result that a moderately detailed picture of the birth,
evolution, propagation, and decay of the internal waves has been obtained. For those cases
in which workers could achieve both (a) the synoptic view provided by satellites and (b)
the detailed in-water view given by current meters and acoustic echo-sounders, these coher-
ent waves have most frequently proven to be soliton-like. As a consequence, when soliton
characteristics are observed in satellite images for which no concurrent in situ data are avail-
able, one can assume with some confidence that a solitary wave is indeed being observed

(APEL & GONZALEZ, 1983). In addition, certain features unique to soliton interactions
have been seen in satellite imagery, e.g. the spatial phase shifts that occur when two soli-
tons pass through each other [see, e.g., in (APEL ET AL., 1995)]"5. Such observations are
unambiguous proof of the solitary wave character of these oceanic internal waves.

Having established that internal solitons are fairly commonplace in the sea, we can then
discuss the observations in that context without continually raising questions about the
correctness of the interpretation.

The question as to why an essentially underwater oscillation is so visible on the surface
has been extensively studied, and a short treatment of the physical processes resulting in
internal wave signatures will be given in Subsection 4.3.

Tidal interaction with bottom features appears to be the dominant mechanism for gen-
eration of the coherent oceanic internal waves near the continents; closer to shore, riverine
canyons or glacial scours provide secondary generating mechanisms. Also, the boundaries
of intense current systems such as the Gulf Stream appear to be sources of coherent wave
packets that propagate at large angles to the current direction. Since tides, stratification,
and bottom topography are global features, one expects tidally excited internal waves to be
ubiquitous wherever stratified waters and shallow bathymnetry exist.

At. least two mechanisms have been advanced to explain the generation process at the
shelf break. The first, formulated by RATTRAY (1960), hypothesizes that the barotropic
(i.e. uniform in depth) tide will be scattered into baroclinic (i.e. varying with depth) modes
at the shelf break. The second is a kind of lee-wave mechanism, wherein tidal flow directed
offshore beyond the shelf break results in an oscillating depression of the pycnocline just
offshore of the break (MAXWORTHY, 1979). As the tidal current ellipse is swept out, the
reversal of that current releases the lee wave from its down-current, phase-locked position.
The wave of depression then propagates opposite to the earlier current direction, i.e. toward

"5 The results were originally presented at, a conference (APE. & LIN, 1991).
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shore, where it evolves independently of further tidal action except for advective effects.
There is some experimental support for both of these processes at the shelf edge, at sills or
similar geometries, and different opinions exist concerning this. Some works suppose that the
second mechanism is dominant (HALPERN, 1971; SANDSTR6M & ELLIOTT, 1984; APEL

ET AL., 1985, HIBYA, 1986). The others prefer the first one (GERKEMA & ZIMMERMAN,

1995; VLASENKO, 1993). It should be noted that the first scattering mechanism does not
have a threshold, whereas the second one does. On the other hand, the second one seems to
be better experimentally investigated. For the lee-wave generation mechanism, a necessary
condition is that the current velocity U should exceed the local phase speed of the internal
wave c. That is, the internal Froude number, Fr, should exceed unity, where Fr is defined
as

Fr- U2/Al, (98)
gAp/p (

Here Al, is the vertical scale of the density and velocity gradients. Note that this condition
correlates with the one needed for shear flow instability (see above) which is based on the
Richardson number condition Ri < 1/4. The Richardson number can be expressed as Ri
1/Fr. Shear instability can be considered as a third possible mechanism of IW generation
(which can be realized independently of the tide-shelf break interaction.); such a process may
be responsible for soliton formation in Knight Inlet (FARMER & ARMI, 1999). Since internal
wave phase speeds are typically of order 0.1 to 1.0 m/s, only moderate tidal currents are
required for their formation. Such currents can occur over underwater sills; near continental
shelf breaks, islands, straits, and shallow banks; and even at the midocean ridges, where
currents such as the Gulf Stream Extension cross the Mid-Atlantic Ridge.

Figure 15 is an image of the ocean made with the 6-cm-wavelength synthetic aperture
radar (SAR) on the European Remote Sensing Satellite, ERS-1, taken southeast of New York
near the edge of the continental shelf on 18 July 1992. The image is 90 x 90 kin , and shows
quasi-periodic internal wave signatures running diagonally across it, approximately parallel
to the edge of the continental shelf. The waves occur in packets separated by some 20 to 25
km and propagate under refractive control of the shallow continental shelf in water depths
between roughly 200 to 50 m. Each packet has been generated by the semidiurnal (12.5-
h) and diurnal (25-h) tides during the phase when the tidal current is directed offshore.
Initially, the offshore flow depresses the pycnocline just seaward of the continental shelf
break. As it moves shoreward, the depression begins to steepen and develop undulations,
most likely because of the dispersion at the leading edge of the depression which agrees with
the description given in the theoretical part here. Within less than one semidiurnal tidal
period, the pycnocline depression became fully modulated and has grown into a solitary
wave train. It is these wave packets that are visible in Fig. 15, which shows perhaps six
groups of waves that represent a history of soliton formation, propagation, and attenuation
extending backward in time to at least 75 h. Also visible in the lower right-hand corner is
what is believed to be a nascent packet being formed just at the shelf break at the time of
the satellite overpass.
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Figure 15: Image of New York Bight taken by the European Remote Sensing Satellite ERS-1
on 18 July 1992 showing �e\erdl p ickets of internal sohtons generated during six previous
tidal cycles in the vicinity of the Hudson Canyon. Dimensions 100 x 100 km. Image courtesy
of R. D. Chapman and the European Space Agency.

Figure 16 is an acoustic echo-sounder trace of solitary wave packets in the region of
Fig. 15, taken with a 20-kHz downward-looking pulsed sonar. The nonlinear character of the
waves is clearly visible, with only downgoing pulses appearing and with very little upgoing
excursion. The towed echo-sounder made repeated passes across the wave train, thereby
allowing questions of stability and wave coherence to be addressed (APEL ET AL., 1975A).
Moored and towed current. nieters and teiriperature probes give similar detailed pictures of
the behavior of the waves with tune.

Equations (22) and (23) allow one to test if solitary waves measured in situ are KdV
solitons or not.. There are different possible indicators showing that the wave is close to a
soliton:
i) the conformity of the wave profile with the sech2-shape;
ii) the linear increase of the velocit�y versus amplitude; and
iii) the inverse proportionality of the solitary wave amplitude to the square of its width,

__ 12/i __ 4h�h�
a
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Figure 16: Acoustic echo-sounder record of solitary wave displacements in the region of
Fig. 15. From (GASPAROVIC ET AL., 1986).

Usually the KdV criterion works well for moderate-amplitude solitons. Figure 17 shows
data taken by NAGOVITSYN ET AL. (1990) in the Sea of Okhotsk (Far East) during the
summer. The data have been normalized and are compared with the KdV soliton shape;
the agreement is considered to be satisfactory. Analogous comparisons can be found in
(KUZNETSOV ET AL., 1984; SANDSTR6M & ELLIOTT, 1984).

A schematic of the type of solitary waves appearing in Fig. 15 is given in Fig. 18; an overall
vertical profile and a plan view are shown, along with the characteristic length scales. Such
packets have strong tendencies for those individual solitons having the largest amplitudes,
longest wavelengths, and longest crest lengths to be at the front of the group, with the
ones having the smallest attributes appearing at the rear. In theory, the small solitons
are followed by linear, dispersive wave trains, but such are difficult to distinguish from the
trailing solitons.

Direct observations of the generation of internal solitary waves at the Nova Scotian shelf
break have been made by SANDSTR6M & ELLIOTT (1984). The wave packets were generated
there during the phase of the tide when the current was directed offshore. The evolution
of the packet occurred with surprising rapidity; fully developed solitary wave characteristics
appear within 2 to 3 h of the packet's birth.

Internal waves propagating shoreward on the continental shelf soon encounter shoaling
bathymetry that affects their propagation speeds and amplitudes. Near the region where
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Figure 17: Normalized soliton shapes (different symbols) as measured in the Sea of Okhotsk,
in comparison with theoretical profile of KdV soliton (solid line). From (NAGOVITSYN ET

AL., 1991).
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Figure 18: Schematics of a soliton wave packet on the continental shelf, and some of its

dimensions. From (APEL, 1995).
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the pycnocline depth is roughly one-half the total depth, they appear to undergo various
transformations. These processes have been studied in numerous papers. Depending on
local hydrological conditions and the incoming wave, diffhrent scenarios of subsequent wave
evolution can occur including the creation of sequences of secondary solitons, disperse wave-
trains, various types of billows, vorticity formation or just turbulent spots (PELINOVSKY

& SHAVRATSKY, 1976; 1977; DJORDJEVIC & REDEKOPP, 1978; KNICKERBOCKER &
NEWEL, 1980; HELFRICH ET AL., 1984; MALOMED & SHRIRA, 1991). As mentioned, for
the case of a mid-depth pycnocline, the extended KdV equation (31) works well; its applica-
tion to the interpretation of observation data is described in, e.g. the paper by HOLLOWAY
ET AL. (2002). Wave propagation through the point when the pycnocline crosses the middle
of the layer due to the depth variation has been observed by, e.g. ORR & MIGNEREY (2003).

In shallow regions, increased amounts of suspended sediments often exist due to solitons,
as has been observed with acoustic echo-sounders (APEL ET AL., 1975B; PRONI & APEL,

1975). Since the bottom currents associated with these waves are large enough to resuspend
sediments, the force due to bottom friction is large and the process of breaking on the

sloping bottom may be what ultimately destroys the waves. Soliton signatures have generally
disappeared from imagery taken in this shallow domain. Soliton processes also apparently
inject large amounts of nutrients into the food chain in the shallow region (SANDSTR6M &
ELLIOTT, 1984), and it is likely that, other areas also benefit biologically from the effects of
internal waves. Note that, in a number of cases, satellite images show more than one family
of solitary wave packets undergoing collisions.

Clear evidence of soliton collisions has been obtained using satellite imagery. Figure 19a is
a schematic of the SAR image of Fig. 20a that shows two intersecting solitary wave packets
that have suffered phase shifts while crossing through each other (which agrees with the
theoretical results for the interaction of two KdV solitons). Ab initio calculations of the
spatial phase shifts using concurrent, measurements of density in the theory of Section 2
have yielded the multi-soliton interactions illustrated in Fig. 19b (APEL & LIN, 1991). A
comparison between the theoretical and observational phase shifts is shown in Fig. 19c; the
agreement between theory and experiment is quite good.

For solitons in ruidlatitude continental shelf waters during summer conditions, typical
scales of the waves (their order of magnitude) in terms of a two-layer approximation are
given in Table 1; note that, deviations from these quantities can be large. The algebraic
quantities appearing in the Table are defined in Fig. 18. The distance D between successive
packets is set by the nonlinear phase speed of the leading solitons in the packets. The radius
of curvature R, can be of the order of the distance from the generation region, although in
shallower water, the phase fronts become controlled by the bathymetry.
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Table 1. Typical Scales for Continental Shelf Solitons

L (km) qo (m) h, (m) h2 (M) 1, (m) Ao (m) W (km) D (km) R, (km) Ap/p

1-5 0-30 5-25 100 100 50-500 0-30 15-25 25-oc 0.001

Scales for dynamical quantities appear in Table 2.

Table 2. Dynamical Quantities

Brunt-Vdiisiilii frequency, N/27 10 cycles/h
Radian frequency, w 0.001-0.005 rad/s
Phase speed, c 0.20-1.0 m/s
Current velocity, U 0.10-1.0 m/s
Packet lifetime, Tlife 24-48 h
Interpacket period, Tgen 12.5-25 h

At the edge of the continental shelf, still other processes are active in generating internal
waves. For example, upwelling, especially near regions of strong bathymetric relief such as
submarine canyons, appears to be an important source. Figure 21 shows an instance of
such a disturbance as observed by the 10-cm-wavelength synthetic aperture radar (SAR) on
the Soviet/Russian spacecraft Almaz-1 [see, e.g., (CHELOMEI ET AL., 1990)]. On the basis

of preliminary calculations, workers analyzing the data believe that the upwelling serves to
excite internal disturbances in submarine canyons and similar regions of high relief, which
then go on to develop into solitons.

Subsequent observations of large, shoaling deep-water nonlinear internal waves include
the Asian Seas International Acoustics Experiment (ASIAEX), a joint acoustics and physical
oceanography observational program conducted in the northeastern part of the South China
Sea in 2001. In ASIAEX, numerous moored, shipboard, and RADARSAT observations
were made of the nonlinear internal wave field, in support of the program's objective of
determining the effect of nonlinear internal waves on acoustic propagation at low frequencies
(50 - 1000 Hz) in shallow water (0- 300 m). The nonlinear waves observed in ASIAEX were
among the largest observed in the world's oceans. Emanating from the Luzon Strait, these
waves had crests up to 200 km in lateral extent, and vertical amplitudes ranging from 29
m to over 140 m. The ASIAEX experiment concentrated significant resources in studying
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Figure 21: Ahnaz-1 SAR image upwelling and internal wave generation off the coast of
Ireland at the edge of the continental shelf, 5 July. Image courtesy of V. S. Etkin and
A. V. Smirnov (1991).

the shoaling of these large waves, with heavily instrumented moorings extending from 300
in depth to 70 in depth, as well as high frequency acoustic imaging. The interested reader
is referred to articles by ORR & MIGNEREY (2003), LIU ET AL. (2004), and RAMP ET AL.

(2004).
Finally, we present an example of a group of strongly nonlinear solitary waves observed

in 1995 in the Coastal Ocean Probing Experiment (COPE) off the coast of northern Ore-
gon. Presumably due to the proximity of Columbia River, a sharp and shallow (5 - 7 m
deep) pycnocline was formed on which groups of very strong, tide-generated internal waves
propagated. A highlight, of this experiment was that, the in situ observations were performed
in two locations along the onshore INV propagation direction separated by 20 kin, so that
the soliton group evolution could be followed up. At. the first site, with a depth of 150 m,
measurements were carried out with a CTD probe from the floating platform (FLIP), see
STANTON & OSTROVSKY (1998). In the second site, with a depth of 60 m, moored ther-
mistor chains were used (TREVORROW., 1998). In both cases, the current velocity of the
IW was measured. Remote images were also obtained from coastal X-band and Ka-band
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Doppler radars with horizontal and vertical polarizations (Kropfli et al., 1998). Details of
this experiment can be found in the cited publications.

Figure 22 presents the 14'C isotherm displacement at the FLIP site. The isotherm
depressions reach 25 - 30 m from its initial depth of 5 - 7 m. The same group of solitons
was registered at the thermistor site after about 6.4 hours of onshore propagation so that
mean propagation velocity was about 0.85 m/s. At this site the solitons become somewhat
smaller (their amplitudes do not exceed 17 - 18 m that is still a very strong nonlinearity).
Peak particle velocity exceeded 0.7 m/s, only slightly smaller than the propagation velocity,
which confirms that the nonlinearity was very strong.

Figure 23 shows a radar image of the ocean surface. Amazingly, such images could be
obtained even with strong sea surface roughness, at wind speeds of up to 13 m/s. The
parameters of observed solitons are far from those predicted by the KdV equations (a some-
what better approximation can sometimes be given by the eKdV, as done in STANTON &
OSTROVSKY, 1998) but they can be satisfactorily approximated by the strongly nonlinear
models discussed above.

More examples of strongly nonlinear solitons are given in (DUDA FARMER, 1999). Note
also an earlier observation in Celtic Sea (PINGREE & MARDELL, 1986) where soliton am-
plitudes reached 40 m.
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Figure 22: Temporal record of depth of 14'C isotherm for September 25-26, 1995 (the peaks
are actually water depressions). From (KROPFLI ET AL., 1999).

63



Figure 23: Panoramic radar images of an RW packet generated during strong spring tide on
September 25, 1995. Left, - Doppler velocity, right, scattering cross-section from vertically
polarized radar signals. From (KROPFLI ET AL., 1999).
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Note that, in general, localized (pulse-type) perturbations observed in the ocean are not
necessarily solitons. They, perhaps, develop into solitons later if the hydrological conditions
are appropriate. An example of such an observation is the one made by (INALL ET AL.,

2001) in 1995 at the edge of the Malin Shelf (to the west of Scotland) at a site of 145 m
total depth. In the time series of recorded pulse-type internal waves, the largest waves had
a downgoing vertical displacement of about 25 m on the pycnocline located at the depth of
about 30 m, and propagated approximately toward the shelf with speeds of 0.54 - 0.6 m/s.
Surprisingly, these large-amplitude waves were only encountered during neap rather than
spring tides, so that their relationship with the tide is not clear. According to authors'
estimates, none of the waves observed possessed significant dispersion and hence, could not
be treated as solitons. The authors estimated mass transport in the waves and obtained
good agreement with the observed transport in the lower layer. In a typical IW packet
of solitary waves, a lower layer transport of about 5 m2 /s offshore was maintained over a
period of about 1.5 h, with a peak of about 20 m2/s. As large-amplitude IWs appeared only
sporadically at the halfway point of each tidal cycle, this short lived transport translates into
a sustained rate over the whole deployment period of about 0.3 m2/s. This correlates with
Huthnance's idea (HUTHNANCE, 1995) that nonlinear IWs may contribute significantly to
cross-shelf exchange processes. (According to Huthnance's estimate, the typical value of the
transport rate is about 1 m2/s for regions with large internal tides).

The last, but not the least interesting, aspect of strong internal solitons in coastal zones
is their environmental effects. Examples can be found in (DUDA & FARMER, 1999). In
particular, STANTON, (1999) observed a significant increase in turbulent mixing in solitons,
whereas LENNERT-CODY & FRANKS (1999) observed strong phytoplankton luminescent
activity in solitons.

4.2 Internal Waves in the Deep Ocean

As a broader view of internal soliton activity on the continental shelves was obtained, the
interest of researchers expanded to their study in the deep ocean. Various questions were
asked: Do solitons exist in the deep sea? What are their typical and extreme parameters?
Where are they encountered most frequently? Over what distances can they propagate?
What fraction of the total internal wave field energy do they contain? Why are they so
coherent as to be recognizable over a large span of space and time scales? What relation do
they have to deep-ocean internal waves, whose spectra, as described by GARRETT & MUNK

(1975), imply that very little coherence exists, and that energy levels are approximately the
same around the globe? We now know that solitary internal waves occur in a wide range of
deep-ocean locales, in regions at least as far as 500 km from shore, and perhaps even farther.

Deep-water solitons are typically formed during strong tidal flow over relatively shallow
underwater sills that protrude up into the permanent thermocline (e.g. 300 - 500 in); they
then radiate away from their sources in narrow straits. The Strait of Gibraltar has been
the most thoroughly studied case (FARMER & ARMI, 1988). Figure 24 is a photograph
taken from the US Space Shuttle showing three packets of solitons propagating into the
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western Mediterranean Sea following their generation at the Gibraltar sill by the combined
tidal, surface, and subsurface flows of Mediterranean water out into the Atlantic Ocean
(LA VIOLETTE ET AL., 1986). The amplitude of these waves is of order 50 m and their
inter-soliton distance, or wavelength, is 500 to 2000 m. It should be emphasized that these
internal waves may have significantly different characteristics from the continental shelf waves
discussed above. The solitons can have larger amplitudes in deep water and much larger
scales both across and along their fronts. At the same time, due to a deeper pycnocline
position and smoother stratification, the effective nonlinearity in such solitons may remain
relatively small, whereas in the shelf zone it can reach significant values as discussed above.

Even larger waves have been detected in the areas of the Guiana Basin in Western Atlantic
(KUZNETSOV ET AL., 1984) and Mascaren Ridge in Indian Ocean (KONYAEV & SABININ,

1992). There, soliton-like (but still evolutioning) depressions of up to 85 - 90 m have been
reported to propagate towards the open ocean with velocities of about 1.7- 2.5 m/s. A group
of solitary waves having an inter-soliton spacing of 20 km and a maximum crest length of
over 90 kin at a distance of 400 kin from their source has been observed with the Landsat
Multi-Spectral Scanner in the Sulu Sea in the Philippines, where they radiate from a narrow
sill approximately 2 km in width (APEL ET AL., 1985; LIU ET AL., 1985). In these
South East archipelagos, a combination of complex geography, inland seas with differing
tidal responses, and a deep pycnocline formed by the stress of the trade winds all work to
cause the soliton populations in the region to be extraordinarily dynamic. These large, deep-
water solitons have been studied in some detail. Several measurements in the Andaman Sea
(OSBORNE & BURCH, 1980) and Sulu Sea (APEL ET AL., 1985; LIU ET AL., 1985) have
shown that solitons exist with amplitudes of up to 70 - 90 m and phase speeds approaching
2.5 mr/s, caused by strong tidal flow over underwater sills between islands. Although the
unperturbed pycnocline depth is of order 125 to 150 in in that region of the ocean, waves
having amplitudes of the order of the pycnocline depth can be generated by the lee-wave
process. Such large amplitudes are accompanied by an appreciable nonlinear increase in
phase speed, according to Eqs. (23). The observations of solitons with amplitudes up to
60 in were made by PINKEL (1999) during the TOGA-COARE experiment in the Western
Pacific. The champion internal solitary wave (ISW) of 120 in amplitude has been apparently
observed in the Strait of Gibraltar by H. BRYDEN [unpublished Cruise Report, April, 1998.
See also (SABININ ET AL., 2004)].

Detailed observations and analysis of solitary internal wave dynamics in the Sulu Sea were
reported by APEL ET AL. (1985) and LIU ET AL. (1985). Some 14 days of measurements
were made with current meters and thermistors at three locales along the direction of wave
propagation, which had been determined earlier using satellite imagery (Fig. 25).

Shipborne instruments, including radar, optical, and acoustic sensors, were also used to
follow wave packets from their birth at a sill at the southern entrance to the Sulu Sea to
their decay approximately 400 km across the sea. A tidal generation process was established
during which (1) the tide initially produces a complex hydrodynamic perturbation at the
sill; (2) the disturbance gradually becomes steeper as it propagates into deep water; and
(3) the perturbation then forms into a solibore, i.e. an undulatory bore that becomes fully
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Figure 24: Photograph of solitons in the Straight of Gibraltar as observed by the U.S. Space
Shuttle. Image courtesy of NASA and P. E. La Violette et al. (1986).

modulated into a group of several solitons by the time the packet reaches a distance of 200
km from the source region. At that distance, the modal differences in velocity of propagation
[see Eq. (9)] have caused a separation of the internal waves by mode to have taken place,
with only mode n = 1 being observed at larger distances (although higher-order modes are
detected closer to the source). Measurements of density, currents, and shear flow profiles
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Figure 25: (a) Internal solitons in the Sulu Sea in the Philippines' area, as observed with
the Defense Meteorological Satellite, and seen in reflected sunlight. Borneo is at lower
left. Visible are 5 packets of solitons generated by tidal action in the Sibutu Passage. (b)
Schematic of phase fronts in frame (a) as observed on two consecutive days in 1979. Current
meter moorings were emplaced at SS-1, SS-2, and SS-3 during 1981. From (APEL ET AL.,

1985).

allowed the evaluation of the coefficients of the solitary wave equations, Eqs. (22), (23) or
the like.

To describe these waves, LIU ET AL. (1985) used a modified form of the JKKD equation
that is similar to Eq. (45), but with modifications for cylindrical spreading and Reynolds-type
dissipation [as in Eq. (49)]. They calculated the evolution of a wave packet over distances
from 90 to 200 km using as the initial data the registered wave perturbation at the point
located 90 kin away from the source. Their results are shown in Fig. 26 for a time interval
of 12.5 h. To fit, numerical and observational data for the 200-km site, the authors used an
empirical value of the coefficient of horizontal eddy viscosity A, = 10 mn2/s and obtained
fairly good agreement between the theoretical/numerical and experimental results.

The eddy viscosity ansatz parameterizes the interaction of internal waves with turbulence,
as well as the radiation of internal wave energy to the surface wave field, which is the source
of their surface signatures (see below). Figure 26 clearly shows how the soliton packet evolves
out of the initial disturbance into a rank-ordered train of pulses that decay in both amplitude
and wavelength toward the rear of the group. Figure 27 shows a comparison of the phase
speeds of 18 solitons in the Sulu Sea with the theoretical JKKD model [cf. Eq. (48)]; the
dependency appears to be in accord with the theory. Such comparisons form quite reasonable
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Figure 26: Theoretical evolution of a solitary wave packet, starting with initial data observed
at SS-2 in Fig. 25, as shown at the bottom. Observations at SS-3 shown at top. From (Liu
ET AL., 1985).

tests of the soliton character of the waves.
Numerical models [see, e.g. (LAMB, 1994)] show that in addition to the tidally gen-

erated solitons which are formed near the continental shelves and which then propagate
towards shore, a well-defined internal soliton packet that propagates into deep water should
also develop. Although such pairs of oppositely directed waves are sometimes seen as the
result of tidal flow over sills, no reports of clearly formed solitons propagating into the deep
ocean from the continental shelf break have been published to the knowledge of the au-
thors. However, other studies suggest that the shelf-break generation process also launches
an offshore-travelling disturbance that propagates down to the bottom, then reflects/refracts
upward, and finally reappears near the surface a few hundred kilometers out to sea (NEW,
1988; PINGREE & NEW, 1989; PINGREE ET AL., 1986). Note also an aircraft-based lidar
observation of a solibore-like group near Alaska propagating offshore (CHURNSIDE & OS-
TROVSKY, 2005). If such generation actually occurs in nature, then the continental shelves
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Figure 27: Experimental versus theoretical phase speeds for solitons in the Sulu Sea. From
(APEL ET AL., 1985).

can be considered to be global sources of deep-water internal waves. Indeed, the generation

process is likely to be as widespread as is the combination of bathyrnetry, stratification, and
current flow. If this is true, as it, appears to be, then the entire rim and island population of
an ocean basin can be sources of internal waves.

As known, deep-ocean internal waves are characterized by a more or less global en-
ergy spectrum, random phases, and rms (root-mean-square) amplitudes of roughly 5 m
(GARRETT & MUNK, 1975). If the process of offshore propagation is also active wherever
the generation of an onshore component occurs, then the observed upper-ocean internal wave
field could originate in considerable part from the bathymetric features around its margins,
and in the upper ocean (seasonal therriocline) they can be nonlinear and soliton-like. A
iNeasurement at a given point in the deep sea would show the sum of many waves arriving

from a variety of points and directions. Even though the internal waves might individually be
composed of' solitons, the resultant surmned signals would have random amplitudes, phases,
and propagation directions, as is observed. Such incoherent fields may not be detectable in
an image because they presumably have few patterns recognizable to the eye. However, the
available high-resolution SAR images of the open ocean [e.g. APEL (1987), p. 466] suggest
that the visible waves are soliton-like and more or less randomly distributed in space.

The energy in such internal waves ultimately derives from the rotational energy of the
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Earth-Moon-Sun system. Observations of the decay of orbital parameters, as well as mea-
surements of solid-Earth tidal dissipation and bottom friction acting on oceanic tides in
shallow seas, suggest that ocean tides by themselves are insufficient to account for the en-
ergy loss. Estimates of internal wave dissipation made using Seasat SAR data suggest that
perhaps 5% to 10% of the changes in the rotational energy budget could be attributed to
internal wave excitation; thus it appears that this process can provide a small but signifi-
cant fraction of the missing energy (Fu & HOLT, 1984). More quantitative estimates of
the dissipation rates have been made by SANDSTR6M & OAKEY (1995), who suggest that
shear-flow instabilities may result in dissipation rates near 5.0. 10- W/m 3 . Later estimates
vary in their predictions but all of them include internal waves in the balance schemes of
tidal energy. It is amusing to consider that space-based observations of events occurring
beneath the sea and which have subtle surface signatures should yield information relevant
to celestial mechanics.

4 0. . . . . ... .. . . . ..... 7ý .- , .
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Figure 28: Map showing sites where internal solitons have been reported (courtesy of Chris
Jackson).

A brief compilation of sightings of internal waves thought to be solitons is shown in
Fig. 28. The signatures have been recorded by in-situ sensors and, in some cases, observed
and photographed simultaneously from aircrafts or satellites. Huthnance (1989) cites a
number of cases for which published documentation exists that establishes their internal
wave character. However, not all of these sightings are necessarily of solitons but, perhaps,
just intense internal waves. The updated information on intense internal waves registered
from satellites and the map of their sightings is presented in the Internet Atlas by JACKSON

& APEL (2004). The global nature of the sightings demonstrates the widespread occurrence
of intense internal waves and, in particular, internal solitons and their trains - solibores.
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Note that the majority of data reflected on the maps concerns primarily coastal zones and
adjoined parts of deep ocean areas. Apparently, this confirms an important role of shelf
breaks in the formation of intense nonlinear IWs.

4.3 Surface Signatures of Internal Waves

The visibility of internal waves at the surface is due to the modification of the equilibrium
surface wave vector spectrum, qj'q(k), by the subsurface currents in the IW, to form a
perturbed, nonequilibrium spectrum, T(k;x,t). In general, this spectrum depends on a
number of parameters such as currents, wind, the presence of surfactants, long surface waves,
etc. As a result, the problem of surface wave modulation is not completely solved yet.
Detailed discussion of this problem is beyond the scope of this paper. Below we give only a
short, outline of muechanisims of forming the surface signatures of internal waves.

In the majority of cases, the basic motion affecting surface waves is the horizontal velocity
of the IW current near the surface. This current changes the wave number and, generally,
the energy of surface waves. The commonly used description of the modulation processes is
grounded in the equation for the conservation of the wave action spectrum (PHILLIPS, 1977;
APEL, 1987). The wave action spectral density, N(k, x, t), is wave energy density per unit
surface area divided by the Doppler frequency of the wave, WD = w - k U, where U is the
horizontal current velocity at, the surface, namely,

V~kt' - 'I(k,x, t)N (k, x, t) = j(, ,t (99)
w - k-k-U'

where k is wave vector, x = (x, y) is surface coordinate, and T1(k, x, t) is the nonequilibrium
energy spectrum, which varies locally in space and tine because of the advective and straining
effects of the internal wave currents.

The balance equation for action spectral density can be derived from the Lagrangian
description or from the energy density balance equation for surface waves (PHILLIPS, 1977).
In the "relaxation time" approximation, it. states that the action spectrum changes along
characteristics in (k, x) space according to

dN(k, x, t) _ ON dk dx N(N- Ncq) (100)

dt - + " d- =r

where N q(k) is the equilibrium action density, and T is the surface wave relaxation time, a
phenomenological measure of how long a perturbed wave spectrum takes to relax back to
its equilibrium state depending on the wind stress (HUGHES, 1978). This equation may be
integrated along characteristics defined by

dxd - C= g+U, (101)
dk
dk -(k. V,)U (102)
dt
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(c9 is the wave group velocity vector).
THOMPSON ET AL. (1988) give the solution for N(k,x,t) in terms of a perturbation,

P(k, x, t), as

P(kx,t) = N"eN [ k. 9U' a ( ) exp -Jt, dt', (103)

where the perturbed action density spectrum is

Neq(14
1±P, xxt)) (104)g~kx~t =1 + P(k, x,t)"

Equation (103) is an one-dimensional temporal integral along the paths defined by
Eqs. (101), (102) and defines the distortion of the spectrum as the surface waves are af-
fected by the internal wave field. See (HUGHES, 1978) or (THOMPSON ET AL., 1988) for a
more complete treatment of the effects described here.

The signatures of strong internal waves can be considerably enhanced by the effect of
"group synchronism", when the phase velocity of internal wave is close to the group velocity
of the surface waves responsible for the formation of radar and optical images (BASOVICH

ET AL, 1984, 1986). This is because the phase speeds of the internal wave solitons are
typically dozens of cm/s (sometimes over 1 m/s), with the corresponding wavelengths for
surface waves lying between several decimeters and few meters. These waves, in turn, can
affect the shorter gravity-capillary waves (cascade modulation).

It should be noted that the analysis of the "space-time rays", Eqs. (101), (102) can often
be an informative tool for understanding the character of wave modulation. In an important
case of a plane IW when U, = U(x - Vt), in the reference frame moving with the wave
speed V, the wave packet frequency is Q = w - k1V (w is the wave frequency in the bottom
reference frame), and the corresponding dispersion equation reads as

Q k (U - V) ± +g(k2 + k2) + a(k2 + k2) 3/2, (105)

where a is the surface tension coefficient. This relation is essentially the first integral of the
system (101),(102). It allows to construct trajectories of wave packets and find variation of
their wavelengths. Note that these trajectories can be closed if the packet is trapped at a
given IW period due to the group synchronism [see, e.g. (BASOVICH ET AL., 1984, 1986)].

To obtain more specific results, the function U(x - Vt) must be specified. For moderate-
amplitude waves, when the KdV model is applicable, from the displacement Eq. (22) the
horizontal velocity on the surface can easily be found in the form

u(x,z = 0, t) = q0yd = sech 2 I (106)
dz 1;=o

where4) is the propagating phase, (D = (x-Vt)/A, and W(z) is the eigenfunction for vertical
velocity. For such weakly nonlinear waves u/V < 1, and the solution of the action equation
(100) without relaxation (r -* oC) shows that the wave intensity is distributed according
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to the "strain rate", O_ [see, e.g. (THOMPSON ET AL, 1988)]. This strain rate causes

the alternating compressive and tensile effects on the surface wave spectrum, that renders
the internal waves visible on the ocean surface as roughness changes. In the converging
phase of internal current, those surface waves whose group speeds are near the phase speeds
of the internal waves are swept together and amplified, whereas that portion of the phase
having diverging internal currents exhibits diminution of the overlying surface wave spectral
content.

In order to estimate the signal contrast found in an internal wave image, it may be
assumed that for small variations of the current strain rate, the relative modulation of the
spectrum, 6 qjl/'7eq, is mirrored in the relative modulation of the radar or optical cross-section
per unit area of the ocean surface, 6a°/ 0a, viz:

(6° N (107)

g 0  Neq qj eq

This means that the formulae presented above can be used to estimate the image contrast,
provided the fractional modulation is small. Much of the research work to date involving
the analysis of internal wave properties has used these formulae.

As an example, Figure 29 shows internal solitary waves in the New York Bight via (a)
their surface signatures in a SAR image, (b) in situ current meter measurements made si-
multaneously with the SAR image, and (c) theoretical cross-sectional modulations computed
using the formalism mentioned above (GASPAROVIC ET AL., 1988). The agreement between
observation and theory is quite good, as may be seen by comparing the solid and dotted
lines in Fig. 29. This figure was also used to evaluate the phase shifts shown in Fig. 19c.

For strongly nonlinear waves, however, Eq. (106) is inapplicable, and instead one can
use the calculations outlined above for strong solitons. For such solitons BAKHANOV &

OSTROVSKY (2002) used Eq. (106) as a wave shape approximation but with parameters
A and V characteristic of strong solitons. As a result they have shown that, instead of
the strain rate maxima, the decrease of surface wave intensity (slicks) can shift towards
the soliton peak (maximal depression) that is in agreement with the COPE observations
mentioned above. Indeed, in (KROPFLI ET AL., 1999), the variations of scattering intensity
and isotherm displacements were plotted together to show that for the strong solitons, the
scattering minima are from the soliton peaks (Fig. 29). Note that in the same paper it was
shown that a similar effect can be produced due to surfactant modulation by the IW current.

This results in alternating regions of enhanced and diminished surface wave spectral
density, regions that are rougher and smoother than the average. Electromagnetic radiation
incident on the surface is thus scattered differentially by the rough and smooth portions,
and an image constructed from such scattered radiation - say a photograph made in visible
light or a radar image - will map the roughness variations. This map mainly mirrors the
underlying internal currents.

Even more complex situation occurs for short gravity-capillary waves when the wind
relaxation cannot be neglected. In this case the IW modulates air flow stress in the lower
atmospheric boundary layer which, in turn, affects wave amplification by wind. Whereas the
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Figure 29: Temporal records of (a) normalized radar cross-section at vertical polarization,
(b) 37-GHz brightness temperature, and (c) current at 4.4 m depth for September 25-26,
1995. From (KROPFLI ET AL., 1999).

action of long surface waves on the low atmospheric boundary layer has been a subject of
a number of papers, the effect of internal solitons wavetrain on short surface waves via the
wind perturbations has been considered in comparatively few publications (GORSHKOV ET
AL., 2003).

Finally, internal waves can affect generation of ripples at the crests of longer gravity waves
("parasitic ripples"). This process is important when the gravity wave amplitude is close to
its breaking value where the wave crest has a large curvature (LONGUET-HIGGINS, 1995).
Due to the sensitivity of ripple generation to the curvature, even for a slight modulation
of the "primary" long wave by the 1W current, the ripple amplitude can change radically.
This version of cascade modulation (1W -* longer gravity wave --+ ripples) was observed in
laboratory by ERMAKOV & SALASHIN (1994) and theoretically described by CHARNOTSKII
ET AL. (2002).

5 Effects of Non-Linear Internal Waves on Sound Waves
in the Ocean

From the point of view of ocean acoustics, nonlinear internal waves are important scatterers
of sound. This scattering is highly frequency dependent, unsurprising given the high degree of
spatial structure of the solitons. We first define what frequency bands are of interest. Based
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on experience, we operationally consider three frequency bands: high frequency (f > 50
kHz), mid frequency (1 kHz < f < 50 kHz), and low frequency (f < 1 kHz).

In the high frequency band, medium attenuation limits sound propagation to ranges on
the order of a few meters to a kilometer. Thus for sonars at high frequencies, the monos-

tatic backscatter geometry is found to be the most useful. Using high frequency sound also
allows one to image an ensonified object with good resolution. In the past few decades, high
frequency acoustic scattering has been used successfully for imaging the detailed structure
of nonlinear internal waves. Such images have provided information on various parameters
of the internal waves, including: snapshots of the detailed spatial structure of individual
solitons; the space-time evolution of solitons, including their generation, propagation, dis-
persion, broadening by bathymetry changes, inversion at the so-called "critical depth"; and
the dissipation of solitons via turbulent processes and wave breaking.

High frequency acoustic images also give views of how material such sediment and biota
are carried by the waves, which is important since these waves can provide non-zero mean
transport of a "tracer" due to their non-linearity. In terms of the acoustics problem for high

frequency scattering by non-linear internal waves, there are still a number of loose ends.
Specifically, there is a well known, yet continually nagging problem of determining which
"tracer" of the internal wave has scattered the acoustic signal. Is the scattering due to
sound speed or density structure, biota, bubbles, or sediment? These tracers all highlight
different parts of the internal wave, and if one is doing imaging, it is obviously necessary to
know what one is imaging. Moreover, one is also often interested in the tracers themselves;
for example, one might like to know what type and size of biota are being carried along by
the wave. The literature on high frequency scattering, while reasonably developed, is not yet
overly extensive. We would refer the reader to the work of ORR ET AL. (2000), WARREN ET

AL. (2003), FARMER & ARMI (1999), and MOUM ET AL. (2003) as representative samples
of this literature, from which one can find references to other work in the field.

Scattering of sound from internal waves at medium frequencies is, at this point in time,
an under-developed area of research. The Strait of Gibraltar tomography study by TIEMANN

ET AL. (2001a, b) is perhaps the most detailed look at scattering of mid-frequency sound
by internal soliton trains reported in the literature. Using frequency modulated sweeps
from 1136 to 3409 Hz, the two transmission paths considered, of 14.6 and 20.1 km length,
provided a "raypath-averaged" view of the solitons, from which the researchers were able to
understand how tidal cycle variability affected both the soliton wave field and also its effect
on the acoustics. The effects of solitons on medium frequency acoustics have also been seen
in "acoustic navigation nets" working at 8 - 13 kHz, and HEADRICK & LYNCH (2000a, b)
report significant travel time fluctuations of short paths (hundreds of meters to a kilometer)
due to nonlinear internal waves. HENYEY & EWART and their collaborators [see (WILLIAMS

ET AL., 2001)] looked at kilometer scale transmissions in shallow water at mid-frequencies,
only using moored towers to constrain observations of the energy to the water column.

Past these studies, the literature is rather sparse. This paucity of results should not
continue indefinitely, however, as there are good reasons to look at the scattering of mid-
frequency sound by internal solitary waves. For instance, if one is interested in the turbulence

76



generated both in a nonlinear internal wave and in its wake, which could have scales from
centimeters to tens of meters, looking for resonance Bragg scattering from mid-frequency
acoustics, which has the same span of wavelengths as the turbulence, might be a viable
method. Short range tomography at mid-frequencies, which has been explored by YAMAOKA

ET AL. (2002), is also an interesting possibility. Experiments which will look at mid-
frequency propagation and scattering in the midst of a strong internal wave field are being
planned at present (J. LYNCH AND D. J. TANG, private communication), so that it is
probably just a matter of time before the literature in this area will expand.

By far the largest amount of research on the scattering of sound by internal solitary waves
has been done in the low frequency regime, and in shallow water, where we operationally
define shallow water to be the region from the tidal mixing front (- 30 m) to the continental
shelf break (- 200 m). In shallow water, there is a well known "optimal" frequency of prop-
agation, on the order of a few hundred Hertz, at which one sees a minimum in propagation
loss (JENSEN ET AL., 1994). This optimal transmission characteristic makes low frequency
an ideal band for shallow water sonar systems. Since the continental shelves are also the
home to a plethora of nonlinear internal waves, it becomes inevitable that the interaction
between the sound waves and ocean internal waves is strongly observed.

When examining the interaction of sound with the coastal soliton field, there are a number
of different issues to consider. First, we note that we must treat both the amplitude and
phase of a scattered signal. This can to some extent be done separately, as the scattering
characteristics for these two basic quantities is often independent, at least to first order. Also,
in treating these variables, we further note that the most common acoustic measurements
are of intensity and pulse travel time fluctuations, two secondary quantities, rather than
of the amplitude and phase directly. Another important consideration in looking at the
acoustic scattering by internal waves is that the acoustic scattering is very different for
source-to-receiver geometries which go across the wavefronts of the internal wave packets as
opposed to those geometries which are along the IW wavefronts. We will examine this next,
in the context of acoustic normal mode theory, which is a natural and physically insightful
descriptor for low frequency, shallow water sound. We will use 2-D range dependent mode
theory here for notational simplicity, noting that a fully 3-D treatment of the acoustic field
is needed for some of the effects we will discuss.

When dealing with a range dependent ocean acoustic waveguide, the Helmholtz equa-
tion is non-separable; however, a variant of the usual separation of variables technique,
called "partial separation of variables", can be employed. Specifically, the range dependent
Helmholtz equation is:

V2 V(r, z) + k2 (r, z)?P(r, z) = 0, (108)

where z is the vertical coordinate, r is the horizontal range, 0(r, z) is the range dependent
normal mode field, and k(r, z) = w/c(z, r) is the total wavenumber, which carries within it
the description of the range-dependent sound speed of the ocean.

For this case, we stipulate the partially separable (modal) solution:
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0 (r, z) R= • •(r)On (r, z). (109)
n

Inserting this solution into Eq. (108) results in a "local normal mode" equation

[z2 + k2(r, z) - knl2 On,(r, z) = 0 (110)

and a set of coupled equations for the radial part of the solution

R',(r) + IRn+ k2(r)Rn(r) [Amn tn+ Bran (' + 2R) (111)T' n

where the prime signifies a range derivative and

Amn fP (Z) O,a(z, r)¢;(z, r) dz and B,n,, =~ )mzr) ('n(z, r) dz (112)

0 0

are the mode coupling coefficients.
These "coupled mode equations" are well known in ocean acoustics, and so we will

just refer the reader to some of the standard texts if more information is desired about

them (.JENSEN ET AL., 1994; KATZNELSON & PETNIKOV, 2002). The solutions to these
equations are usually generated numerically, via codes like the well-known KRAKEN code
(PORTER, 1991).

It is worth noting the details of the weakly range dependent solution to the coupled mode
equations, obtained by setting the Arnn and B,,,, terms of Eq. (111) equal to zero. In this
limit, the so-called "adiabatic mode" solution for pressure is as follows:

phasealspliadde o

p(z,r) ~'! 4(z,r)=C>3 ''f(Zs>)fl(Zr) exp {../n() d} exp {- d',( )d1 .
,TO k.,l(,r) d, J n(r) or ,

0 attenuation

This particular modal solution is germane to propagation along the internal wavefront,
where the range dependence of the medium parameters is slow, so that the coupling coeffi-
cients remain small. The adiabatic solution clearly shows how the variability of the ocean
medium (in our case the internal waves) produces amplitude and phase (and thus travel time)
fluctuations. For amplitude, the passage of the internal waves over the source and receiver
positions produces a distortion of the normal modes at those positions, which thus changes
the received pressure p(z, r). For phase, A!,(r) varies over the source to receiver range, which

R
changes the phase, n,= f k,(r) dr. Such adiabatic amplitude and phase fluctuation effects

0
are well known, and examined in detail for the case of surface gravity waves.
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For the coupled mode (across IW crest) propagation case, we get both the adiabatic
effects noted above (since the adiabatic solution is, in essence, the lowest order coupled
mode solution) as well as some additional effects. In the case of strong range dependence
(i.e. large 0c8(z, r)/Or --- large, where c8 is the sound speed in the water column and "large"
means of the order of 10 m/s per km or more, the same order as the deep ocean vertical
sound speed change), the normal modes exchange energy along the source-to-receiver track.
This leads to modal arrivals at a distant receiver which have shared characteristics of the
modes along the path. As an example, consider the travel time of a mode one reception at a
receiver (assuming we can filter the signal so as to identify modes) in a waveguide that only
supports two modes. For the case of no coupling, mode one arrives at its expected travel
time, i.e. tl = R/vj . However, with coupling, the mode one arrival can start out in mode
two, travel to a point x where it encounters a soliton and couples into mode one, and then
continues propagating to the receiver as that mode. This "coupled mode one arrival" has the
arrival time t' = x/v± +(R-x)/v1, which is intermediate between the uncoupled mode one
and mode two arrival times. It is easy to see that if there are "scatterers" densely distributed
along the source-to-receiver (S/R) path, one will see a mode one arrival which is spread out
in time between the usual mode one and mode two arrival times. This "time spreading"
is a well known phenomenon in shallow water pulse propagation, where the coupled mode
arrivals spread between the arrival times of the fastest and slowest uncoupled modes.

Turning to soliton induced coupled mode effects on amplitude, it is found that the biggest
contribution to amplitude fluctuation is caused by the difference in medium attenuation for
different modes (or "differential attenuation"). In general (though exceptions can be found),
the low order trapped acoustic modes attenuate slowly, whereas the higher order trapped
modes (and certainly the continuum modes) attenuate far more quickly, due to enhanced
boundary interaction. Thus, if a low mode couples to a high mode, more propagation loss is
seen - the opposite is true for a high mode coupling to a low mode.

Let us look a little further at phase and travel time scattering effects. "Pulse wan-
der", which is the variation in arrival time of a pulse with no change in the shape of the
pulse, is mathematically the frequency derivative of the phase (fluctuation) integral shown
in Eq. (113). It has been shown by LYNCH ET AL. (1996) that pulse wander effects are
significantly larger for along IW wavefront propagation than for across wavefront, an effect
which is readily understood by examining the phase integral in Eq. (113). The integrand
of that integral oscillates quickly and largely cancels for across IW wavefront propagation,
whereas it is relatively constant along an IW wavefront. The wander also shows a distinct
mode number dependence, which is associated with where the acoustic mode vertical turning
points are located in relation to the maximum amplitude points of the internal wave modes
(which are usually dominated by mode one, as previously discussed.) Wander effects for
path lengths of 25 - 50 km at frequencies of 100 - 500 Hz tend to be of order 10 msec (or
less) along IW wavefronts, and about 1 msec (or less) across the wavefronts.

The travel time spread, which is caused by the mode coupling due to across IW wavefront
propagation, shows an interesting effect which has been dubbed "near receiver dominance".
Specifically, when an internal wave or packet of internal waves is between an acoustic source
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and receiver, and moreover is close to the receiver, then the time spread seen is a maximum.
The explanation for this is seen by taking the limit x --+ R in our previous two mode
example. In this limit, the arrival time difference between the "undisturbed mode one" and
the "coupled mode one" is a maximum. This spreading effect was clearly seen in the 1995
SWARM experiment (APEL ET AL., 1997) by HEADRICK ET AL. (2000a,b), who showed
an M2 tidal signal in the spread of pulsed signals due to the passage of the nonlinear internal
tide by the receiver.

We next turn to the acoustic amplitude scattering effects of the internal waves. We will
first look at the across IW wavefront propagation geometry, simply because that was the
geometry that was first examined experimentally and theoretically, and is better understood
at this point in time. Undoubtedly the best known shallow water acoustics experiments on
sound scattering by internal waves are the Yellow Sea series of experiments reported by ZHOU

ET AL. (1991). In these experiments, ZHOU ET AL. (1991) reported seeing anomalously
high propagation losses versus frequency, up to 30-40 dB, a huge amount. These anomalous
losses were attributed to Bragg resonant scattering from a strong internal wave train with
evenly spaced internal wave solitons. (This is not the usual soliton wavetrain one sees, but
it is what exists in the Yellow Sea.) Resonant scattering occurs when projection of the
IW wavelength along the acoustic path, A1w, is equal to the acoustic mode interference
distance (commonly called the "mode cycle distance"), A'n, where A =n= 2-T/(k, - ku).
The internal wave train acts as a 2D Bragg crystal lattice, which give both frequency and
azimuth dependence to the scattering field. At resonance, the predominantly lower mode
energy created at the source was transferred to higher modes, which then attenuated more
quickly, thus greatly increasing the total energy losses reported. (We again note that the
opposite effect from this can happen, depending upon the depth of the source relative to
the stratification of the ocean. If the source is in warmer, higher sound speed water, higher
acoustic modes are preferentially excited at the source. IW coupling then transfers much of
their energy to the low modes, which decay more slowly, producing less loss.) This resonance
mechanism is a robust and easily understandable one. Moreover, it can be generalized to non-
regularly spaced internal wave trains, simply by examining the spatial wavenumber spectrum
of a soliton wave train, and then matching these wavenumber components to the acoustic
mode cycle distances. PREISIG & DUDA (1997) [see also (DUDA & PREIsIG, 1999)] have
shown, via numerical simulations, the details of a second mechanism for strong scattering,
specifically the resonance of pairs of acoustic modes with the widths of the individual solitons.
This mechanism is universal and is, in fact, a more detailed version of the Bragg mechanism
just discussed. Since strong IW scattering mechanisms exist in nature, substantial across-
wavefront, coupled mode acoustic scattering is the rule, rather than the exception.

Next we come to propagation along IW wavefront. This topic has been explored mostly
theoretically, though recent experimental data has confirmed some of the theory. An inter-
esting geometry which recently has been considered is the "along IW wavefront" geometry
shown in Fig. 30. This creates "horizontally ducted propagation" of acoustic normal modes
between internal wave solitons. Two neighboring solitons in a wavetrain create high sound-
speed regions, with a comparatively low speed region in between. This creates a horizontal
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duct (in the x-y plane) for each vertical acoustic normal mode. The detailed scattering by
this duct was predicted via the theory by KATZNELSON & PERESELKOV (2000), by com-
puter modelling by FINETTE ET AL. and recently has seen a striking confirmation in the
SWARM experimental data taken by BADIEY ET AL. (2002, 2005). This ducting effect is a
strong one, easily producing 6 - 8 dB level increases in low frequency, broadband transmis-
sions. Moreover, since this is a fully three-dimensional effect, the focusing of energy gives
amplitude fluctuations over and above the 5.6 dB that one expects from saturated normal
mode multipath interference in two dimensions (in the x-z plane). Additionally, the descrip-
tion of such propagation requires fully 3-D theory and numerics, and goes beyond the scope
of the simple 2-D equations presented previously.

Top view Side view
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Figure 30: Ducting of sound between internal waves.

There are two additional "along-internal-wavefront" scattering effects that have been
theoretically predicted by PIERCE & LYNCH (2003) and COLOSI ET AL. (2004), though
not yet unambiguously observed. They are the so-called "Lloyd's mirror" (KATZNELSON &
PETNIKOV, 2002) and "whispering gallery mode" effects. In the first effect, one sees the
interference between a direct arrival and a totally internally reflected arrival which has been
glancingly reflected off an internal wave or the leading edge of a packet of internal waves. The
second effect, the whispering gallery effect, is somewhat more complicated. To begin with,
sound propagating along-shelf is being refracted seaward by seaward sloping bathymetry.
Then internal waves just seaward of the acoustic paths reflect the acoustic energy back in
the shoreward direction, given small grazing angle incidence. This results in the sound being
trapped between the slope pushing it seaward and the IW's reflecting it shoreward. It is the
ocean acoustic analog of a whispering gallery except that the curved rays act like the curved
walls of a whispering gallery, whereas the IW's act as the wall reflector. This effect may
have in fact been observed (though from a front, not internal waves) via the enhanced noise
level at a receiver in the SWARM experiment; however, this evidence is preliminary at best,
and detailed experiments are needed to verify this.

To conclude, we note that further oceanographic measurements of nonlinear internal
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waves are needed to better understand the scattering of acoustic signals. To begin with,
the fully 3D structure and evolution of internal wavetrains in range variable bathymetry
and hydrology needs to be understood, as this defines the basic scattering entity. Second,
the turbulence generated by the nonlinear internal waves needs to be better measured, as
it also promises to be important to mid-frequency acoustic scattering. Finally, the relative
strength of the coastal nonlinear versus linear internal wave field needs to be described, as
both species of waves can be important to acoustic scattering (SPERRY ET AL., 2003).

6 Concluding Remarks

In this review paper we tried to outline different aspects of ISWs including theoretical models,
field data, and the ISW action on acoustic wave propagation. Natural observations confirm
that intense ISWs or their trains (solibores) do exist both in shallow and deep ocean areas,
and in many cases their parameters are close to those predicted theoretically. There is not
only academic interest in ISWs: they are able to provide strong vertical mixing, transport
particles, affect turbulence and biological life, and even possibly interfere with underwater
navigation. They affect surface waves, thus creating surface "slicks" that are visible by
optical devices and radars and sometimes by naked eye. They influence propagation of
acoustic signals in water and may form specific conditions for ducting sound waves.

Intensive theoretical and observational studies over the last decade have confirmed that
ISWs are a widespread phenomenon throughout the oceans, especially in coastal zones where
they are generated by barotropic tides. They probably absorb a noticeable part of the total
tidal energy. Internal solitons are, so to say, the "extremes" of the internal wave spectrum,
their magnitudes possibly reaching many dozens of meters. They are probably may be at
least partially responsible for the fact that the 1W spectrum in upper ocean differs from the
Garrett-Munk spectrum characteristic of deeper water layers (the main thermocline area).

In spite of an impressive recent progress in studies of ISWs, some important questions
remain unanswered or at least not completely clear. One of them is how the ISW are
generated in the ocean. The main source of oceanic ISWs is apparently internal tides.
However, the relative roles of specific mechanisms in their formation (lee waves, scattering
of barotropic tides by bottom features), as well as the roles of shear instability, the Earth's
rotation, etc., that are discussed in literature, are not clear in many cases. Also the energy
sinks for solitons are not always known.

Another problem is the ISWs propagation along inhomogeneous paths, e.g. onshore
propagation from the shelf break zone. There exist a number of theoretical models for these
processes, especially for weakly nonlinear waves described by the KdV or KP equations with
slowly varying parameters. Experimentally, however, most in situ observations cover one or,
in few cases, two observation points, with little knowledge of what occurs at other points.
On the other hand, remote observations from aircraft and satellites can provide a panoramic
pattern of the surface "slicks," but without detailed in situ data. Some exceptions have been
described above.

Other questions relate to statistical properties of solitons: where are most active zones

82



of soliton generation located, what are the typical and extreme parameters of solitons in
different areas, and, in cases when solitons are randomly distributed, what are their statistical
and spectral characteristics. We already mentioned the Atlas of solitons available on the
Internet, but it only describes several typical areas; perhaps a more comprehensive atlas
could be created in the form of a map like that shown in Fig. 28 but much more detailed.

Very close to the aforementioned statistical problems is the problem of the sudden ap-
pearance of internal waves of giant amplitude (so called "freak" or "rogue" waves). In recent
years this problem was intensively attacked by many researchers in reference to surface waves,
due to their practical importance to navigation and coastal engineering. Essential progress
in this field has been achieved in understanding of the nature of freak waves, their statistical
features, possible mechanisms of generation, etc. [see, e.g., (KHARIF & PELINOVSKY, 2003;
KURKIN & PELINOVSKY, 2004) and references cited therein]. A similar problem may be
topical for internal waves, too, as they can pose a danger for submarines, oil and gas plat-
forms, pipelines and other engineering constructions in the coastal zones. The problem of
freak internal wave studies has only recently attracted the attention of researchers, and only
the first theoretical steps had been undertaken in this direction (KURKIN & PELINOVSKY,

2004). Based on the working definition of freak waves as waves whose amplitudes exceed the
average background by more than 2 - 2.2 times, many observed solitary IWs can be referred
as freak waves. We should note that the long-wave models considered in this review seem to
be more justified for describing freak internal waves than the corresponding shallow-water
models used for modeling freak surface waves as the latter usually appear in the deep ocean
rather than in shallow seas.

And certainly the numerous possible mechanisms of ISW action with the electromagnetic
and acoustic fields must be better understood: indeed, the interpretation of remote sensing
data crucially depends on the corresponding models.

Finally, the action of ISWs on other processes such as, e.g. biological life in upper
ocean and shallow seas, has not been sufficiently addressed yet; this is a very promising and
practically important area of oceanography.

Nonetheless, from we already know, we can arguably state that ISWs are the most reg-
ularly and clearly observed kind of solitons in natural conditions! One can foresee much
further progress in this area of theoretical and experimental oceanography.
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